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Chapter 1

Foundation of Arithmetic

1.1 What is a Natural Number?

We begin with axiomatic definition of the set of all natural numbers, known as Peano’s axioms,
also known as Dedekind—Peano axioms. This was originally proposed by Richard Dedekind in
1988, and was published in a simplified version as a collection of axioms in 1989 by Giuseppe
Peano in his book Arithmetices principia, nova methodo exposita (in English: The principles of arith-
metic presented by a new method). We define addition and multiplication of natural numbers,
and briefly discuss their useful arithmetic properties (with outline of proofs) that we are famil-
iar with from elementary mathematics courses, without possibly thinking why and how these
work? The purpose of this section is to provide a logical foundation of natural numbers and their
arithmetic.

Axiom 1.1.1 (Peano’s axioms). There is a set N satisfying the following axioms.

(P1) 1 € N(so N 5 (); the element 1 is called one.

“

(P2) Axiom of equality: There is a relation “ = ” on N, called the equality, satisfying the following
properties.

(i) a=a,VaceN,
(i) given a,b € N, we havea =b = b= a, and
(iii) given a,b,c € N,ifa =band b= c, then a = c.

In other words, the relation “ =" on N is an equivalence relation on N. If “a = b”, we say that “a
is equal to b”. If “a = b” is not true, we say that “a is not equal to b”, expressed symbolically as
LLa # b77.

(Remark: The axiom (P2) was included in the original list of axioms published by Peano in 1889.
However, since the axiom (P2) is logically valid in first-order logic with equality, this is always
accepted, and is not considered to be a part of Axiom 1.1.1 in modern treatments.)

(P3) Foreachn € N, there is a unique s(n) € N, called the successor of n.

(P4) 1 is not a successor of any element of N.

(P5) Given m,n € N with m # n, we have s(m) # s(n).

(P6) Principle of Mathematical Induction: If a subset S C N has properties that

(i) 1€ 8, and
(i) ne S = s(n) €S,

then S = N.
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The elements of N are called natural numbers, and hence N is called the set of all natural numbers.
Exercise 1.1.2. Verify that s : N — N, n — s(n) is injective but not surjective.

Remark 1.1.3. In contrast to our naive intuition, the properties (P1)-(P5) in Peano’s Axioms
1.1.1 do not guarantee that the successor function generates all natural numbers (we are famil-
iar with) except for 1. To make our naive intuition works, we need the assumption (P6), known
as the Principle of Mathematical Induction.

Lemma 1.1.4. Ifn € Nwith n # 1, then there is a unique element p(n) € N, called the predecessor of
n, such that s(p(n)) = n.

Proof. Since s : N — N, n — s(n) is injective by (P5), uniqueness of p(n) follows. To show
existence of p(n), for each n € N\ {1}, it is enough to show that

s(N):={s(n) : n e N} =N\ {1}
Since 1 ¢ s(N) := {s(n) : n € N} by (P4), to show that s(N) = N\ {1}, it is enough to show that
T:=s(N)u{1} =N.

Clearly 7 C Nand 1 € T. If m € T, thenm = 1 or m = s(n), for some n € N, and so in
both cases, s(m) € T by construction of T. Then (P6) tells us that T = N. This completes the
proof. O

Definition 1.1.5. A binary operation on a set Sisamap S x S — S.

Definition 1.1.6. On the set N, we define two binary operations

(1.1.7) Addition +:NxN =N, (m,n)— m+n,
(1.1.8) and Multiplication - :NxN =N, (m,n)—m-n.

using the following rules given by the recurrence relations':

Rule for addition of natural numbers:

(1.1.9) n+1:=s(n), VneN, and
(1.1.10) n+ s(m) :=s(n+m), Yn,m e N.
Rule for multiplication of natural numbers:

(1.1.11) n-1:=n,VneN, and
(1.1.12) n-s(m):=(m-m)+n, Vn,meN.

Lemma 1.1.13. The above rules (1.1.9)-(1.1.10) defines a unique binary operation on N, called addition
of natural numbers satisfying those properties.

Proof. To check uniqueness of the binary operation + satisfying the properties (1.1.9)—(1.1.10),
let ® : N x N — N be any binary operation on N satisfying the following properties:

(A) n®1=s(n),VneN, and

(B) n® s(m) =s(n® m),Vn,meN.

Let m € N be arbitrary but fixed after choice. Let A := {n € N: m +n = m @& n} C N. Since
m+1l=sm)=madl,1€ A Ifne A thenm+n=men,andsom+ s(n) = s(m+n) =

LA relation that recalls itself repeatedly to generate its complete meaning.
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s(m @ n) = m @ s(n). Therefore, s(n) € A, and hence by principle of mathematical induction
(see (P6) in Axiom 1.1.1) we have A = N. This proves uniqueness of the binary operation + on
N.

Let n € N be arbitrary but fixed after choice. Let
T, :={m € N:n+m is defined}.

Clearly 75, € N. We want to show that 7,, = N. Now 1 € T}, by axiom (1.1.9). If m € T,,, then
n + m is defined, and so by axiom 1.1.10 n + s(m) is defined. So s(m) € T,,. Then by principle
of mathematical induction (see (PP6) in Peano’s Axiom 1.1.1) we have T,, = N. O

Lemma 1.1.14. The above rules (1.1.11)—(1.1.12) defines a unique binary operation on N, called the
multiplication of natural numbers satisfying those properties.

Proof. Left as an exercise. O

Now you know why and how you could add and multiply any two natural numbers!

Definition 1.1.15. Let * : S x S — S be a binary operation on a set S. We say that x

(i) is associative if (axb) xc=ax (bxc), Va,b,c € S;
(ii) is commutativeif axb=>bx*a, Va,b € S;

(iii) distributes over a binary operation 8 : S x § — S'if forall a, b, c € S we have

The following result is well-known, however, it is strongly recommended to verify these
in details purely using Peano’s Axioms 1.1.1, and the axioms (or, definition) for addition and
multiplication (1.1.9)—(1.1.12).

Theorem 1.1.16. Forall a,b, c € N, the following statements hold.

(i) Associativity for addition: (a +b) +c=a+ (b+ ¢).

(ii) Commutativity for addition: a + b = b+ a.
(iii) Left distribution of multiplication over addition: a - (b+¢) = (a - b) + (a - ¢).
(iv) Right distribution of multiplication over addition: (a +b) - ¢ = (a-c) + (b- c).
(v) Commutativity for multiplication: a -b =15 a.

(vi) Associativity for multiplication: (a-b)-c=a- (b-¢c).
Proof. (i) Proof of associativity of addition: Let a, b € N be arbitrary but fixed after choices. Let
Top:={ceN:a+(b+c)=(a+b)+c}

Clearly T, , € N. To prove associativity for addition, we need to show that 7, = N.
Since

a+ (b+1)=a+ s(b), byaxiom (1.1.9).
= s(a+b), by axiom 1.1.10.
= (a+b)+1, byaxiom1.1.9,
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we conclude that 1 € T, ;. Suppose that ¢ € T, ; be arbitrary. Then
a+ (b+s(c)) =a+s(b+c), byaxiom (1.1.10).
=s(a+ (b+c¢)), byaxiom (1.1.10).
= s((a+0b)+c¢), byaxiom (1.1.10).
= (a +b) + s(c), by axiom (1.1.10).
Therefore, s(c) € T, 5. Then by principle of mathematical induction (see (P6) in Peano’s
Axiom 1.1.1) we have T, ;, = N. (Now you know why 1+ (2 +3) = (1 +2) + 3.)
(ii) Proof of commutativity of addition: For eacha € N,let S, :={beN:a+b=0b+a} C N. We
first show that S; = N. Clearly 1 € 5;. If b € Sy, then
s(b) +1 = s(s(b)), by axiom 1.1.9.
=s(b+1), byaxiom 1.1.9.
=s(1+0b), sinceb € S; by assumption.
=1+ s(b), byaxiom 1.1.10.
Therefore, s(b) € S1, and hence S; = N by (P6) in Axiom 1.1.1. Now let a € N be arbitrary
but fixed after choice. Since S; = N, wehavel € S,. If b€ S,, thena + b = b+ a, and so
we have
a+s(b) =s(a+0b), byaxiom (1.1.10).
=s(b+a), sincebc S, by assumption.
=(b+a)+1, byaxiom (1.1.9).
=1+ (b+a), sinceb+aeN=35;.
= (1+b) + a, using associativity of addition.
=((b+1)+a, sincebe N= 5.
= s(b) + a, by axiom (1.1.9).
Then s(b) € S,, and hence by (P6) in Peano’s Axiom 1.1.1 we have S, = N.
(iii) Proof of left distribution of multiplication over addition: Let a, b € N be arbitrary but fixed after
choices. Let
Dyp:={ceN:a-(b+c)=(a-b)+(a-c)} CN.
We need to show that D, ;, = N. Note that,
a-(b+1)=a-s(b), byaxiom (1.1.9);
= (a-b) + a, by axiom (1.1.12);
=(a-b)+ (a-1), byaxiom (1.1.9).
Therefore, 1 € D, 3. Suppose that ¢ € D, ;. Then
a-(b+s(c)) =a-s(b+c), byaxiom (1.1.10);
a-(b+c)+a, byaxiom (1.1.12);
=((a-b)+ (a-c)) +a, sincec € D, by assumption;
=(a-b)+ ((a-c) + a), by associativity for addition;
=(a-b)+ (a-s(c)), byaxiom (1.1.12).
So s(c) € D, . Therefore, by (P6) of Axiom 1.1.1 we have D, ; = N.
(iv) Proof of right distribution of multiplication over addition: Left as an exercise.
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(V) Proof of commutativity of multiplication: Given a € N, let
Se={beN:a-b=0b-a}.

We first consider the case a = 1. Clearly 1 € S;. If b € 51, then

1-s(b)=1-(b+1), byaxiom (1.1.9).
=(1-b)+ (1-1), by left distribution of multiplication over addition.
=(b-1)+(1-1), sinceb e 5.
= (b+1)-1, by right distribution of multiplication over addition.

b+1)-
= s(b) - 1, by axiom (1.1.9).

Thus, s(b) € S;. Therefore, by principle of mathematical induction we have S; = N. Now
assume that a # 1. Since 51 = N, we have 1 € S,,. Suppose that b € S,. Then

-s(b) = (a-b) + a, by axiom (1.1.12).

=0b-a)+(1-a), sincelesS, = l-a=a-1=a.
=(b+1)-a, by Theorem 1.1.16 (iv).

(

= s(b) - a, by axiom1.1.9.

So s(b) € S,, and hence S, = N by principle of mathematical induction.

(vi) Proof of associativity of multiplication: Left as an exercise! Let a, b € N be arbitrary but fixed
after choice. Let
Myp:={ceN:a-(b-c)=(a-b)-c}.

Clearly M, C N. To prove associativity for multiplication, we need to show that M, ;, =
N. Sincen -1 = n, Vn € N by axiom (1.1.11), we havea- (b-1) =a-b = (a-b) - 1. So
1 € M,y. Suppose that c € M, ;. Then

a-(b-s(c)) ((b-¢)+b), byaxiom (1.1.12).
(b-¢)+ (a-b), by Theorem 1.1.16 (iii).
a-b)-c+(a-b), by Theorem 1.1.16 (v).

a-b)-s(c), byaxiom1.1.12.

=a-
=a-

= (

= (

Therefore, s(c) € M, 1, and hence by principle of mathematical induction we have M, ; =

N.

O

Proposition 1.1.17. For each n,a € N, we have s"(a) = a + n, where s™ : N — N is the n-times
composition of s with itself (e.g., s> = so s, s° = so s o setc.).

Proof. LetT :={n € N:s"(a) =a+n, Va € N}. Clearly T’ C N, and 1 € T by axiom 1.1.9.
Assume that n € T. Then 5*(") (a) = s"*1(a) = s5(s"(a)) = s(a+n) = (a+n)+1=a+(n+1) =
a+ s(n). So s(n) € T. Then by principle of mathematical induction we have T = N. O

Lemma 1.1.18. Leta,b,n € N. Ifa+n=0b+n,thena =b.

Proof. Note that the successor map s : N — N is injective by (P5) in Axiom 1.1.1. Since s™(a) =
a+n=0b+n = s"(b) by Proposition 1.1.17, and composition of injective maps is injective, we
have a = b. O

Exercise 1.1.19 (Cancellation for multiplication). Leta,b,r, ¢ € N.

(i) If fa = £b, show that a = b.
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(ii) If ar = br, show that a = b.
Exercise 1.1.20. Let a € N. Show that the equation = 4+ a = 1 has no solution for x in N.

Theorem 1.1.21 (Law of trichotomy for natural numbers). Given a,b € N, exactly one of the
following three conditions holds:

(i) a=0b,
(ii) a =0b—+ ¢, for some c € N, or

(iii) b= a + d, for some d € N.

Proof. We first show that no two conditions among (i)—(iii) can hold simultaneously. If (i) and
(ii) holds simultaneously, then b = b + ¢ implies s(b) = s(b+¢) = b+1=(b+¢)+1 =
b+ (c+1) = 1 =c+1 = s(c), which contradicts axiom (P4) in Peano’s Axioms 1.1.1.
The same argument shows that (i) and (iii) cannot hold simultaneously. If (ii) and (iii) hold
simultaneously, then we have a = b+ c = (a +¢) +d = a + (¢ + d), for some ¢,d € N. Then
applying successor map we see thata +1 = (a + (¢ +d)) + 1 = a + ((c+ d) + 1). Then by
Lemma 1.1.18 we have 1 = (¢ +d) + 1 = s(c+ d), which contracts (P4) in Peano’s Axioms 1.1.1.
Therefore, no two conditions among (i)—(iii) can hold simultaneously.

We now show that at least one of (i)—(iii) holds. For each a € N, let
S, :={b € N: atleast one of (i) or (ii) or (iii) holds}.

Consider the case a = 1. Clearly 1 € S;. Suppose that b € S;. Then s(b) = b+ 1 = a + b satisfies
condition (iii), and so s(b) € Si. Then by (P6) in Peano’s Axioms we have S; = N. Suppose
that a € N\ {1} be arbitrary but fixed after choice. Since b = 1 satisfies a = s(p(a)) = p(a)+1 =
p(a) + b, with p(a) € N, the condition (ii) holds for b = 1, and so 1 € S,. Suppose that b € S,.
Then we have the following cases:

(I) Ifa =0b, then s(b) =b+ 1 = a+ 1, and so s(b) satisfies condition (iii). So s(b) € S,,.

(II) If a = b+ ¢, for some c € N, then a = s(b) or a = s(b) + p(c) depending on whether ¢ = 1
or c € N\ {1}, respectively. So in both cases, s(b) € S,,.

() If b = a + d, for some d € N, then s(b) = b+ 1 = a + (d + 1) satisfies condition (iii), and
hence s(b) € S,,.

Therefore, S, = N by principle of mathematical induction. O

The law of trichotomy in Theorem 1.1.21 allow us to define usual order relation “ < ” on N
as follow.

Definition 1.1.22. Given a,b € N, we definea < bif 3¢ € Nsuchthata+c=0b. If a < b, we
say that “a is strictly less than b”.

Note that “ < ” is a relation on N which is neither reflexive nor symmetric or anti-symmetric.
We show that it is a transitive relationon N. If a < band b < ¢,thena+r =band b+ s = ¢, for
somer,s € N,and thena + (r+s) = (a+r) +s=b+ s = cshows thata < c. If a < b we say
that “a is less than b”. The relation “ < ” is called the usual ordering relation on N. Define another
relation “ <” on N by setting

a<b ifeithera=0>b ora<b.

”

If a < b, we say that “a is less than or equal to b”. It is easy to see that “ < ” is reflexive and
transitive. We show that “ < ” is anti-symmetric, and hence is a partial order relation on N.
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Suppose that a,b € N with a < band b < a. We want to show that a« = b. Suppose on the
contrary that a # b. Then we must have a < b and b < a. Then there exist ¢,d € N such that
a+c=0band b+ d = a. Then

b+d)+c=a+c=b
= b+ (d+ c) = b, using associativity of addition.
= s(b+ (d+c¢)) = s(b), applying successor map.
= (b+(d+c¢))+1=0>b+1, usingaxiom 1.1.10.
=b+((d+¢)+1) =b+1, using associativity of addition.
= (d+¢)+1=1, using Lemma 1.1.18.
= s(d+c) = 1.

This contradicts axiom (P4) in Peano’s Axioms 1.1.1. Therefore, we must have a = b as required.

Definition 1.1.23. A partial order relation p on a set S is called a total order if for any two
elements a,b € S, at least one of a pb and b pa holds. A non-empty set S together with a total
order relation is called a well-ordered set.

As an immediate consequence of the law of trichotomy of natural numbers (Theorem 1.1.21)
we see that “ < ” is a total order relation on N, and hence (N, <) is a well-ordered set.

Theorem 1.1.24. The following are equivalent.

(i) Principle of mathematical induction (regular version): Let S C N be such that
(a) 1 €S, and
(b) foreachn € N, n € S implies s(n) € S.
Then S = N.

(ii) Principle of mathematical induction (strong version): Let T C N be such that
(@) 1€T,and
(') foreachn e N, J,, :={k € N: k <n} C T implies s(n) € T.
Then T = N.

Proof. (i) = (ii): Suppose that the conditions (a’) and (b’) holds for ' C N. Since 1 € T by (a'),
to show T' = N using the regular version of principle of mathematical induction (i), it is enough
to show that for each n € N, the statement

P,: “neTimplies s(n) € TV

holds. Consider the set
S:={neN:P;holds, Vk<n} CN.

Since 1 € T by (a’), we have J; = {1} C T, and hence by (V') we have s(1) € T. Therefore, P;
holds, and so 1 € S. Let n € S be arbitrary but fixed after choice. Then P, ..., P, hold, and
hence we have J;,,) = {k € N: k < s(n)} C T. Then by the condition (') we have s(s(n)) € T,
and hence P;(,,) holds. Therefore, P holds, ¥ & < s(n), and hence s(n) € S. Then by (i) we
have S = N. Thus, T' = N.

(ii) = (i): Let S C Nbe such that 1 € S, and n € S implies s(n) € S. To show S = N using
the strong version of principle of mathematical induction (ii), we just need to ensure that for
eachn € N, if J,, C S then s(n) € S. But this follows because n € J,, implies that n € S, and so
s(n) € S by (a). Then by (ii) we have S = N. This proves (i). O

Theorem 1.1.25. The following are equivalent.
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(i) Principle of Mathematical Induction (strong version): Let S C N be such that

(a) 1€ S,and
(b) foreachn € Nwithn > 1,if{k e N: k <n} C Sthenn € S.

Then S = N.

(ii) Well-ordering principle of (N, <): Any non-empty subset of N has a least element.

Proof. (i) = (ii): Suppose on the contrary that there is a non-empty subset S C N which has no
least element. Let
T:=N\S={neN:n¢S}

Since 1 is the least element of N, we have 1 ¢ S; for otherwise 1 would be the least element of S.
Therefore, 1 € T and hence 7' is a non-empty subset of N. Let n € N with n > 1, and suppose
that for any £ € Nwith k < n, wehave k € T. Thenn ¢ S, for otherwise n would be the least
element of S. So n € T. Then by principle of mathematical induction (strong version), we have
T = N. This contradicts our assumption that S is non-empty. So S must have a least element.

(ii) = (i): Let S € N be such that

(a) 1 €S, and

(b) foreachn € Nwithn > 1,if{k e N:k <n} C Sthenn € S.

Assuming well-ordering principle of (N, <), we want to show that S = N. Suppose on the
contrary that S # N. Then T := N\ S is a non-empty subset of N, and so by (i) it has a least
element, say n € T'. Since 1 € S by assumption, n > 1. Since n is the least element of 7', for any

k € Nwith k < n, wehave k € N\ T = S. Then by property (b) of S we have n € S, whichis a
contradiction. This completes the proof. O

1.2 Integers: Construction & Basic Operations

Let a,b € N. Suppose that we want to solve the equation
(1.2.1) r+a=0»b

to find z. If a < bin N, then there is r € N such that b = r + «a. If there is another number s € N
such that b = s+a, thenr+a = s+ a implies r = s. So the solution of the equation (1.2.1) exists
and is unique; we denote this solution by a — b € N. Now the problem is if a« < b, we don’t
have any solution of this equation in N. This forces us to enlarge our natural number system to
a bigger number system where we can find solutions to such linear equations.

Define a relation ~ on the Cartesian product N x N by setting
(1.2.2) (a,b) ~ (¢c,d), if a+d=b+c.

It is an easy exercise to show that ~ is an equivalence relation on N x N. The ~-equivalence
class of (a,b) € N x N is the subset

(1.2.3) [(a,b)] :=={(c,d) € Nx N|(a,b) ~ (c,d)}.

Let Z := {[(a,b)] : a,b € N} be the associated set of all ~-equivalence classes. The idea is to
think of the equivalence class [(a, b)] to be the solution of the equation x + b = a. The elements
of Z are called integers, and Z is called the sef of all integers.

Define a map
t:N—=Z
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by
t(n) =[(s(n),1)], YneN.

Then v(n) = t(m) = [(s(n),1)] = [(s(m),1)] = s(n)+1=s(m)+1 = s(s(n)) = s(s(m)) =
s(n) = s(m) = n =m,since s : N — N is an injective map. Therefore, ¢ : N — Z is an injective
map, and hence we can use it to identify N as a subset of Z. For notational simplicity, we may
denote by n the element [(s(n),1)] € Z, for all n € N.

Define a binary operation on Z, called addition of integers, by
(1.2.4) [(@,B)] + (e, d)] = [(a + e, b+ d)], ¥ [(a,b)], [(c, )] € Z.

Note that, if (a,b) ~ (a’,b') and (¢, d) ~ (¢/,d’), then (a + ¢, b+ d) ~ (a' 4+ ¢/, b’ + d'). Therefore,
we have a well-defined binary operation + on Z.

Exercise 1.2.5. Show that the addition of integers is associative and commutative.
Exercise 1.2.6. Verify that,
tm+n)=(m)+t(n), Vm,n eN.

Therefore, the addition operation on integers preserves the addition operation on natural num-
bers defined earlier.

Note that, the element [(1,1)] € Z satisfies
[(a,0)] +[(1, )] = [(a,0)] = [(L, )] + [(a, b)].
We denote by 0 (pronounced as zero) the element [(1,1)] € Z. Since
[(s(n), D] +[(1,5(n)] = [(1,1)] =0, Vn €N,

for notational simplicity (for peaceful working notations), we denote by —n the element [(1, s(n))] €
Z, for all n € N. The element of Z of the form n and —n are called positive integers and negative
integers, respectively.

Exercise 1.2.7. The subsets Z~ := {[(1, s(n))] : n € N}, {0} := {[(1,1)]} and Z" := {[(s(n),1)] :
n € N} are mutually disjoint, and their union is Z. As a result, we may write the set Z as

Z={-n:neN}U{0} UN.

The elements of Z~ and Z™ are called the negative integers and the positive integers, respectively.

We define another binary operation on Z, called the product operation, by
(1.2.8) [(a,0)] - [(¢,d)] := [(ac + bd, ad + be)], ¥ [(a,b)],[(c,d)] € Z.
It is easy to check that, if (a,b) ~ (a/,b') and (¢,d) ~ (¢/,d’), then (ac + bd, ad + bc) ~ (a'd +
b'd',a’'d + V'), and hence the product operation is well-defined. One can easily check that,
(@) [(a,0)] - [(¢;d)] = [(¢,d)] - [(a,D)],
(i) [(s(m), 1)] - [(s(r),1)] = [(s(mn), 1)].

Remark 1.2.9. With the above definitions and notations, one can check that the binary opera-
tions addition and multiplication of integers are associative, commutative, and multiplication
distributes over addition. In other words, the following properties hold.

@) (a+b)+c=a+(b+c), Ya,bceZ
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(i) (ab)e =a(bc), Va,b,c€Z;

(i) a+b=b+a, VabeZ;

(iv) ab=ba, Ya,b€ Z;

(v) a(b+c) = (ab) + (ac), Va,b,c €Z;
(vi) (a+0b)c=(ac)+ (be), Ya,b,c€Z.

Exercise 1.2.10. Letn € Z. If a + n = b + n, for some a, b € Z, show that a = b.

We define the usual ordering relation “ < ” on Z as follow: given m,n € Z, we define
m <nif 3r € NU{0} such thatm +r = n.

Exercise 1.2.11. Verify that (Z, <) is a well-ordered set.

1.3 Division Algorithm

Recall that the well-ordering principle of natural numbers says that any non-empty subset S of
N has a least element. This means, there exists n € S such that n < m, for all m € S. This
statement is equivalent to the principle of mathematical induction, which says that if S C N is
suchthat1l € S,and foreachneN,ne€ S = n+1¢€S5,thenS=N.

Theorem 1.3.1 (Division algorithm). Given a,d € Z with d > 0, there exists unique q,r € Z with
0 <r < dsuchthat a = qd + r.

Proof. We first show uniqueness of ¢ and r. Suppose that we have another pair of integers
¢',7" € Zsuchthat0 <7’ < dand a = ¢'d + r’. Without loss of generality we may assume that
r <r'. Thengd+r =a = ¢d+ 1 implies ' —r = (¢ — ¢')d. Since 0 < r < 1’ < d, we have
0 < (¢g—¢)d=r"—r <d. Therefore, (¢ — ¢')d is a non-negative integer which is strictly less
than d and is a multiple of d. This is possible only if (¢ — ¢')d = 0. Since d # 0, we must have
¢ = ¢, and hence r = r’. This proves uniqueness part.

To show existence, consider the set
S:={a—dg:qeN}NN.

Since d > 0, choosing ¢ sufficiently small we can ensure that a — dg € N, and hence S # (). Then
by well-ordering principle of (N, <), S has a least element, say ry. Then 0 < ry = ¢ — dgo, for
some gy € Z. We claim that vy < d. If not, then vy > dand hence 0 < ry —d =a —d(g+ 1)
implies that 1o — d € S. Since d > 0, it contradicts the fact that r( is the least element of S.
Therefore, we must have ry < d. This completes the proof. O

Definition 1.3.2. The absolute value of n € Z is the integer |n| defined by

in| = n, if n>0,
n= —n, if n<DO.

Corollary 1.3.3. Given a,d € Z with d # 0, there exists unique q,r € Z with 0 < r < |d| such that
a=dq+r.

Proof. If d > 0, this is precisely Theorem 1.3.1. If d < 0, then d’ := —d > 0, and so by division
algorithm (Theorem 1.3.1) we find unique integers ¢, € Z with 0 < r < d’ such thata = d'q+r.
Then the integers ¢’ := —¢ and r satisfies 0 < r < |d| witha = ¢'d + r. O
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Definition 1.3.4. Given n,d € Z, with d # 0, we say that d divides n, written as d | n, if there is
an element ¢ € Z such that n = ¢d. Given finitely many integers a;,...,a, € Z, which are not
all zero, we define their greatest common divisor to be a positive integer d € Z* such that

(i) d divides each of the numbers a1, ..., a,, and

(ii) if an integer r divides a;, forall i =1,...,n, then r divides d.
Remark 1.3.5. Given a finite number of integers ai,...,a, € Z, if d and d’' are two greatest
common divisors of ay, ...,a,, thend | d and d’ | d implies d € {d’, —d’'}. Since both d and d’
are positive integers, we must have d = d’. Therefore, the greatest common divisor of a1, . . ., a,
is unique, and we denote it by ged(as,...,a,). However, it is not yet clear if ged(aq,. .., an)

exists in N. This requires a proof.

Lemma 1.3.6. Given m,n € Z, not all zero, the greatest common divisor gcd(m,n) exists in N.
Moreover, there exist a,b € Z such that gcd(m,n) = am + bn.

Proof. Let S := {am + bn : a,b € Z}. Since at least one of m and n is non-zero, there is a
non-zero element, say z, in S. Then z = am + bn, for some a,b € Z. If x < 0, then —z =
(—a)m + (=b)n € S N N. Therefore, S NN is a non-empty subset of N. Then by well-ordering
principle of N, the non-empty subset S N N has a least element, say d. Then d = agm + bon, for
some ag, by € Z. We claim that d = ged(m, n).

Ifr | mandr | n, thenr | (agm+bon) and sor | d. Now we need to show thatd | mand d | n.
Let « € S be arbitrary. Then z = am + bn € S, for some a, b € Z. By division algorithm we can
find ¢,r € Zwith 0 < r < dsuch thatz = gd+r. Thenam+bn = z = qd+r = g(agm+bon) +r
implies r = (a — gag)m + (b — gbg)n € S. Since 0 < r < d and d is the smallest positive integer
in S NN, we must have r = 0. Therefore, z = ¢d and hence d | z, for all z € S. In particular,
choosing (a,b) € {(1,0), (0,1)}, we see that d | m and d | n. This completes the proof. O

Definition 1.3.7. Given m,n € Z, we say that m and n are relatively prime (or, coprime) if
ged(m,n) = 1.

Corollary 1.3.8. Two integers m and n are coprime if and only if there exists a,b € Z such that

am+bn =1.

Proof. 1f gcd(m,n) = 1, then by above Lemma 1.3.6, there exists a,b € Z such that am + bn = 1.
Conversely, suppose that am + bn = 1, for some a,b € Z. If d = gcd(m,n), thend | mand d | n

implies d | 1. Then d € {1, —1}. Since d > 0, we have d = 1. O
Exercise 1.3.9. Given a finite number of integers a1, . . . , a,, not all zero, show that gcd(as, ..., a,)
exists in N.

Definition 1.3.10. An integer p € Z is said to be a prime number if p > 1 and its only divisors in
Z are £1, +p.

Exercise 1.3.11 (Principle of mathematical induction). Fix ng € N. Prove that the following are
equivalent.

(i) Regular version: Let S C N be such that

(@) ng € S, and
(b) for any n € Nwithn > ng,ifn € Sthenn+1¢€ S.

Then S = {n e N:n > ng}.
(if) Strong version: Let T' C N be such that

(@) ng € T, and
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(b’) forany n € Nwithn > ng,if {k € N:ng<k<n}CTthenn+1eT.

ThenT = {n € N:n > ng}.

Assuming well-ordering principle of (N, <) show that the above two versions of induction
holds true.

Theorem 1.3.12 (Fundamental theorem of Arithmetic). Given a positive integer n > 1, there exists
a unique factorization of n as a product of positive integer powers of prime numbers. More precisely,
there exist finite number of unique prime numbers pq,...,pr € N with py > --- > p; and positive
integers cvy, ..., ax € Nsuch that n = p{* - - pi*.
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Chapter 2

Group Theory

2.1 Group

A binary operation on a set Aisamap *: A x A — A; given (a,b) € A x A its image under
the map * is denoted by a * b. We consider some examples of non-empty set together with a
natural binary operation and study list down their common properties.

Example 2.1.1. The set of all integers
7 ={0,+1,42, +3,+4,45, ..}
admits a binary operation, namely addition of integers:
+:Zx7Z—17Z, (a,b)— a+hb.

This binary operation has the following interesting properties:

(i) a+(b+c)=(a+b)+c Ya,bcelZ,
(ii) thereis an element0 € Z suchthata+0=0+4+a=a, Va € Z,

(iii) for each a € Z, there exists an element b € Z (depending on a) such thata +b=>b+a = 0;
the element b is denoted by —a.

Example 2.1.2. A symmetry on a non-empty set X is a bijective map from X onto itself. The set
of all symmetries of X is denoted by S(X). Note that S(X) admits a binary operation given by
composition of maps:

0:8(X) x S(X) — S(X), (f,g)—>gof.
Note that

(i) givenany f,g,h € S(X), wehave (fog)oh = fo(goh).

(ii) there is a distinguished element, the identity map Idy € S(X) such that foldx = f =
Idx of, forall f € S(X).

(iii) given any f € S(X), thereisaelementg:= f~! € S(X)suchthat fog=1Idy =go f.
g y

Example 2.1.3. Fix a natural number n > 1, and consider the set GL,,(R) of all invertible n x n
matrices with entries from R. Note that GL,,(R) admits a natural binary operation given by
matrix multiplication:

. GL,(R) X GL,(R) = GL,(R), (A, B)+— AB.

Note that
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(i) givenany A, B,C € GL,,(R), we have (AB)C = A(BC).

(ii) there is a distinguished element, the identity matrix I,, € GL,, (R) such that AI,, = [, A =
A, for all A € GL,,(R).

(iii) given any A € GL,(R), there is a element B := A~! € GL,(R) such that AB = BA = I,,.

A non-empty set together with a binary operation satisfying the three properties listed in
the above examples is a mathematical model for many important mathematical and physical
systems; such a mathematical model is called a group. Here is a formal definition.

Definition 2.1.4. A group is a pair (G, *) consisting of a non-empty set G together with a binary
operation
* :GxG— G, (a,b)—> axb,

satisfying the following conditions:

(G1) Associativity: a * (bxc) = (a*b) ¢, forall a,b,c € G.
(G2) Existence of neutral element: 3 an element e € G such thataxe =exa=a, Va € G.

(G3) Existence of inverse: for each a € G, there exists an element b € G, depending on a, such
thataxb=e=0bxa.

A semigroup is a pair (G, ) consisting of a non-empty set G together with an associative
binary operation * : G x G — G (i.e., the condition (G1) holds). A monoid is a semigroup (G, *)
satisfying the condition (G2) as above. For example, (N, +) is a semigroup but not a monoid,
and (Zxo, +) is a monoid but not a group. However, we shall not deal with these two notations
in this text.

Example 2.1.5. (i) Trivial group: A singleton set {e} with the binary operation e x e := eis a
group; such a group is called a trivial group.

(i) The set G := {e,a}, with the binary operation * givenby axe =exa =aand axa = ¢, is
a group with two elements.

(iii) Verify that G := {e,a, b} together with the binary operation * given by the following
multiplication table, is a group (with three elements).

e o %
Q2 oo
QR
Qo oo

TABLE 2.1.5.1: A group with 3 elements

Remark 2.1.6. For a group consisting of small number of elements, it is convenient to
write down the associated binary operation explicitly using a table as above, known as
the Cayley table.

(iv) The sets Z, Q, R and C form groups with respect to usual addition.
group P
(v) The set Q* = Q\ {0} forms a group with respect to usual multiplication.

Exercise 2.1.7. Let (G, ) be a group.

(i) Uniqueness of neutral element: Show that the neutral element (also known as the identity
element) e € G is unique.
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(if) Uniqueness of inverse: Show that, for each a € G, there is a unique element b € G such that
a*b=bxa=e. The element b is called the inverse of a, and denoted by the symbol a~*.

(iii) Cancellation Law: If a * ¢ = b x ¢, for some a, b, ¢ € G, show that a = b.

(iv) Let a,b € G. Show that Junique z,y € Gsuchthataxx =band y xa = b.

Let (G, ) be a group. We say that G is finite or infinite according as its underlying set G is
finite or infinite; the cardinality of G is called the order of the group (G, *), and we denote it by
the symbol |G|. For notational simplicity, we write ab to mean a b, for all a, b € G; and for any
integer n > 1, we denote by a” the n-fold product of a with itself, i.e.,

a = ax---xaq
—_——

n-fold product of a

For a negative integer n, we define a™ := (a~')~™. When there is no confusion likely to arise,
we simply denote a group (G, *) by G without specifying the binary operation.

Exercise 2.1.8. Let G be a group.

(i) Show that (a=!)~! =q, foralla € G.

(ii) Show that (ab)~! =b"1a" 1, foralla,b € G.
(iii) Show that a™a™ = a™*", for all m,n € Z and a € G.
(iv) Show that (a™)™ = a™", for all m,n € Z and a € G.

(v) Leta,b € G be such that ab = ba. Show that (ab)” = a™b", for all n € Z.

Example 2.1.9. (i) The set C* := C\ {0} of non-zero complex numbers forms a group with
respect to multiplication of complex numbers.

(ii) Circle group: The set
St:i={z€eC : |z| =1}

forms a group with respect to multiplication of complex numbers.
(iii) Klein four-group: Consider the set K4y = {e, a, b, ¢} together with the binary operation
x: Ky x Ky — Ky

defined by the Cayley table 2.1.9.1 below. Verify that K is a group.

Q0 oS
[SIRESTIES R oW e

QO SN O %
o o o|®
S0 0 Q|

TABLE 2.1.9.1: Klein four group

Exercise 2.1.10. Define a binary operation on RZ=R xR by

(z1,91) + (22, 92) := (x1 + 22,51 + ¥2), V (z1,51), (z2,92) € R”.

Verify that (R?, +) is a commutative group. Similarly, for eachn € N, show that the component-
wise addition of real numbers:

(2111) (al,...,an) + (bl,...,bn) = (a1 +b1,...7an +bn), Vaj7bj € R,

defines a binary operation + on R™ which makes the pair (R", 4-) a commutative group.
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Definition 2.1.12. Amap f: A — Bissaid to be

(i) injective if given any a1, as € Awith f(a1) = f(az2), we have a; = as,
(ii) surjective if given any b € B, there is an element a € A such that f(a) = b,
(iii) bijective if f is both injective and surjective.

Exercise 2.1.13. Let A, B and C be three sets. Given maps f : A -+ Band g : B — C, we define
the composition of g with f, also called “g composed f”, to be the map go f : A — C defined by

(9o f)a) =g(f(a)), Vae A

Prove the following.

(i) If both f and g are injective, sois go f: A — C.
(ii) If both f and g are surjective, soisgo f: A — C.
(iii) If g o f is injective, show that f is injective.
(iv) Give an example to show that g o f could be injective without g being injective.
(v) If g o f is surjective, show that g is surjective.
(vi) Give an example to show that g o f could be surjective without f being surjective.

(vii) Given any set A, there is a map Id4 : A — A defined by Ida(a) = a, ¥V a € A, known as
the identity map of A. Verify that Id 4 is bijective.

(viil) If f : A — Bisbijective, show that there is a bijective map f: B — Asuch that fo f=1da
and f o f = Idp. The bijective map f : B — A, defined above, is called the inverse of f,
and is usually denoted by f~*.

Definition 2.1.14. A permutation on a set A is a bijective map from A onto itself.

For a non-empty set A, we denote by S the set of all permutations on A. Let A be a non-
empty set. Define a binary operation on S4 by

0:Sax8Sa—Sa, (frg)r—gof.

Verify that (S4, o) is a group. (Hint: Use Exercise 2.1.13).

Example 2.1.15 (Symmetric group S3). Consider an equilateral triangle A in a plane with its
vertices labelled as 1, 2 and 3. Consider the symmetries of /A obtained by its rotations by angles
2nm /3, for n € Z, around its centre, and reflections along a straight line passing through its top
vertex and centre. Note that, we have only six possible symmetries of A as follow:

1 — 1 1 — 2 1 — 3
00=12 = 2, 01=4¢2 = 3, 00=4¢2 — 1,
3 — 3 3 — 1 3 = 2
1 — 1 1 — 3 1 - 2
03=4¢2 — 3, 04=¢2 — 2, 05=<¢2 — 1.
3 — 2 3 — 1 3 — 3

Let S3 := {00, 01,02,03,04,05}. Note that, each of symmetries are bijective maps from the set
Js3 := {1,2,3} onto itself, and any bijective map from .J; onto itself is one of the symmetries
in S3. Since composition of bijective maps is bijective (see Exercise 2.1.13), we get a binary
operation

Sg X Sg — Sg, (Ui7gj) > 0;00;.
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Exercise 2.1.16. Write down the Cayley table for this binary operation on S3 defined by compo-
sition of maps, and show that S3 together with this binary operation is a group. Find 01, 05 € S3
such that g1 002 # 09 0 O01.

Definition 2.1.17. The order of a group G is the cardinality of its underlying set G. We denote
this by |G|. In particular, if G is a finite set, then |G| is the number of elements of the set G.

Example 2.1.18. Let S, be the set of all bijective maps from J, := {1, 2, 3,4} onto itself. Given
any two elements 0,7 € Sy, note that their composition o o 7 € S;. Thus we have a binary
operation on Sy given by sending (o, 7) € Sy x S4 to 0 o 7 € S4. Show that the set S4 together
with this binary operation (composition of bijective maps) is a non-commutative group of order
4! = 24.

Definition 2.1.19. Let A C R. Amap f : A — R is said to be continuous at o € A if given any
real number € > 0, there is a real number § > 0 (depending on both € and a) such that for each
x € Asatisfying |a — x| < §, wehave |f(a) — f(x)| < e. If f is continuous at each point of A, we
say that f is continuous on A.

Exercise 2.1.20. Let A C R, and let C(A) := {f : A — R| f is continuous}. Verify that C(A) is
a group with respect to the binary operation defined for all f, g € C'(A) by the formula

(f+9)(x) == f(z)+g(z), Ve A

Solution. Let f1, fo € C(A). Let a € A be arbitrary but fixed after choice. Since both f; and f>
are continuous at a, given a real number € > 0, there exist real numbers d;,d2 > 0 such that
for each x € A satisfying |a — z| < d; we have |f;(a) — f;j(z)| < €/2,forall j = 1,2. Let§ :=
min{dy,d2}. Then d > 0, and for any = € A satisfying |a — z| < §, we have |f;(a) — f;(z)] < €/2,
for all j = 1,2. Then we have,

[(f1 + f2)(a) = (fr + f2) ()| = |fi(a) + f2(a) = fi(z) — fa(2)]
= |(fi(a) = fi(x)) + (fala) — fa(x))]
<|fi(a) = fr(z)| + [fa(a) — fa(z)]

<e+e
2 2

= €.

Therefore, f1 + f> is continuous at @ € A. Since a € A is arbitrary, fi + f2 is continuous at every
points of A, and hence fi + f» € C(A). Since for given fi, f2, f3 € C(A) and any =z € A, we
have

((fr+ f2) + f3) (@) = (f1 + f2) () + f3(x)
= (filx) + fa(2)) + f3(2)
= fi(x) + (fo(z) + f3(2))
= fi(@) + (f2 + f3)(2)
= (fi+ (f2+ f3))(2),

we have (f1 + f2) + f5 = fi + (f2 + f3). Note that, the constant function
0:A—R

defined by sending all points of A to 0 € R, given by 0(a) = 0, Y a € A4, is continuous (Hint:
given € > 0, take any ¢ > 0), and satisfies f +0 = f = 0+ f, forall f € A. Given f € C(4),
note that the function — f defined by (—f)(a) = —f(a), for all a € A, is continuous on A (Hint:
given e > 0, take the same § > 0 which works for f), and satisfies f + (—f) = (—f) + f = 0.
Therefore, (C(A), +) satisfies all axioms of a group, and hence is a group. O

Example 2.1.21 (Matrix groups). (i) Fix two integers m,n > 1, and let M,, x,(R) be the set of
all m x n matrices with entries from R. Given A, B € M,,«x,(R), we define their addition
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to be the matrix A + B € M,,x»(R) whose (i, j)-th entry is given by a;; + b;;, where a;;
and b;; are the (4, j)-th entries of A and B, respectively. Then we have a binary operation

+ : Mpsn(R) X Mypsn(R) — My xn(R), (A,B) — A+ B.

Clearly, the set M,, «,(R) is non-empty, and the pair (M,,, x» (R), +) satisfies the properties
(G1)—(G3) in Definition 2.1.4.

(i) Matrix multiplication: Fix positive integers m, n, p, andlet A € M, x,(R) and B € M,,x,(R).
Define the product of A and B to be the m x p matrix AB € M, «,(R), whose (i, j)-th entry
is

(2.1.22) cij =Y airbyj,
k=1

where a;;, is the (i, k)-th entry of A4, and by; is the (k, j)-th entry of B.
Let A € M,,«,(R). A matrix B € M,,»,,(R) is said to be the left inverse (resp., right inverse)
of Aif BA = I, (resp., AB = I,,), where I,, € M,,«x»(R) whose (¢, j)-th entry is
5oL it i=j
Y0, if i £
Exercise 2.1.23. Show that the left inverse and the right inverse of A € M,,»,(R), when

they exists, are the same. In other words, if AB = I,, and CA = I, for some B,C €
M, xn(R), show that B = C.

A matrix A € M,,«,(R) is said to be invertible if there is a matrix B € M,,«,(R) such that
AB = BA=1,.

General linear group: Let
GL,(R) = {4 € M,,x»(R) : Ais invertible}
be the set of all invertible n x n matrices with real entries.

(a) Show that GL, (R) is a group with respect to matrix multiplication.

(b) Give examples of A, B € GL,,(R) such that A + B ¢ GL,,(R).

(c) Give an example of A € M, (R) such that AB # I,,, V B € M,,x»(R).
(d) Assumingn > 2 give examples of A, B € GL,(R) such that AB # BA.

The group GL,, (R) is called the general linear group (of degree n).
As we see in Example 2.1.21 that the relation ab = ba need not hold for all a,b € G, in

general. We shall see later that the symmetric group S3 in Example 2.1.9 (2.1.15) is the smallest
such group; in this case, we have 03 o0 01 = 04 while 1 0 03 = 05.

Definition 2.1.24. A group G is said to be commutative (or, abelian) if ab = ba, for all a,b € G. A
group which is not commutative (or, abelian) is called a non-commutative (or, non-abelian) group.

Exercise 2.1.25. (i) Verify that {e}, Z, C*, S, K are abelian groups.
(ii) Show that S3 and GL2(R) are non-abelian groups.
Exercise 2.1.26. Show that GL,,(R) is not abelian, for all n > 2.

Definition 2.1.27. A relation on a non-empty set A is a non-empty subset p C Ax A. If (a,b) € p,
sometimes we may express it as a p b, and call a is p-related to bin A. A relation p on A is said to
be
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(i) reflexiveif (a,a) € p, Va € 4;

(ii) symmetric if (a,b) € p implies (b, a) € p;
(iii) anti-symmetric if (a,b) € p and (b,a) € p implies a = b;
(iv) transitive if (a,b) € p and (b, ¢) € p implies (a,c) € p;

(v) equivalence if p is reflexive, symmetric and transitive; and
(vi) partial order if p is reflexive, anti-symmetric and transitive.

Let A be a non-empty set, and let p be an equivalence relation on A. The p-equivalence class
of an element a € A is the subset

la], :={be A:(ba) € p} C A.

Proposition 2.1.28. With the above notations, given any a,b € A, [a], = [b], if and only if (a,b) € p.

Proof. Suppose that (a,b) € p. Then for any ¢ € [a],, we have (c,a) € p. Since p is transitive,
from (c,a), (a,b) € p we have (¢,b) € p, and so ¢ € [b],. Therefore, [a], C [b],. Since p is
symmetric, (a,b) € p implies (b,a) € p. Then following above arguments, we conclude that
[b] C [a]. Therefore, [a], = [b],.

Conversely, suppose that [a], = [b],. Since p is reflexive, a € [a],. Then [a], = [b], implies
that a € [b],, and so (a,b) € p. This completes the proof. O

Proposition 2.1.29. With the above notations, given a,b € A, either [a], N [b], = 0 or [a], = [b],.

Proof. 1t is enough to show that if [a], N [b], # 0, then [a], = [b],. Let ¢ € [a], N [b],. Then
(¢,a),(c,b) € p. Since p is symmetric, (¢, a) € p implies (a,c) € p. Then (a,c) € pand (¢, b) € p
together implies (a,b) € p, since p is transitive. Then by Proposition 2.1.28 we have [a], =
bl O

Definition 2.1.30. Let A be a non-empty set. A partition on A is a non-empty collection P :=
{Aq : @ € A}, where

(1) A, C A, foralla € A,
(i) Ao NAg =0, fora+# pin A, and
(i) A= |J An.

acA
Proposition 2.1.31. To give an equivalence relation on a non-empty set is equivalent to give a partition
on it.

Proof. Suppose that we have given an equivalence relation p on A. Since p is reflexive, a € [a],,

forall a € A, and hence A = | [a],. Since p-equivalence classes of elements of A are either
acA
disjoint or equal (see Proposition 2.1.29), the collection P consisting of all distinct p-equivalence

classes of elements of A is a partition of A.

Conversely, suppose that P = {A,, : o € A} be a partition of A. Define
p={(a,b) e Ax A:a,be A,, forsome o € A}.

Note that (a,a) € p, forall a € A. If (a,b) € p, then both a and b are in the same A,, for some
a € A, and so (b,a) € p. So p is symmetric. If (a,b), (b,c) € p, thena,b € A, and b, c € Ag, for
some «, 3 € A. Since b € A, N Ag, so we must have A, = Ag. Therefore, (a,c) € p. Thus p is
transitive. Therefore, p is an equivalence relation on A. One should note that the elements of P
are precisely the p-equivalence classes in A (verify!). O
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Example 2.1.32 (The groups Z,, and U,,). Fix an integer n > 2. Define a relation =,, on Z by
setting
a=,b, ifa—>b=nk, forsomek € Z.

If ¢ =, b sometimes we also express it as a = b (mod n), and say that a is congruent to b modulo
n. Verify that =, is an equivalence relation on Z. Given any a € Z, let

[a) :={beZ:b=,a} CZ
be the =, -equivalence class of a in Z. Let
Zy :=A{la] :a € Z}

be the set of all =,,-equivalence classes of elements of Z. Let a,b € Z. If ¢ € [a] N [b], then
¢ = a+ nky and ¢ = b+ nky, for some ki, ks € Z. Then a — b = n(k; — ko), and hence

a =, b. Then [a] = [b] in Z,,. Therefore, the =,-equivalence classes are either disjoint or
identical (c.f. Proposition 2.1.29). Use division algorithm (Theorem 1.3.1) to show that =,,-
equivalence classes [0], [1],. .., [n — 1] are all distinct, and

Z={[k] :0<k<n-—1}.

In particular, Z,, is a finite set containing n elements.

We now define two binary operations on Z,,. Suppose that [a] = [a¢'] and [b] = [V'] in Z,,, for
some a,a’,b,b’ € Z. Then we have

a—a =nkp,
and b— b = nk,,

for some k1, ko € Z. Therefore,
(a + b) — (Cl/ + b/) = n(k‘l — k‘g),

and hence [a + b] = [@’ + V'] in Z,,. Therefore, we have a well-defined binary operation on Z,
(called addition of integers modulo n) given by

[a] + [b] = [a +b], ¥ [a],[b] € Zn.
Now it is easy to see that,
(i) ([a] +[0]) + [c] = [a] + ([b] + [c]), for all [a], [b], [c] € Z.
(i) [a] + [0] = [a] = [0] + [a], for all [a] € Z,.
(iii) [a] + [~a] = [0], for all [d] € Z.
Therefore, (Z,,+) is a group. Note that, for all [a], [b] € Z, we have

[a] + [b] = [a +b] = [b+ a], since addition in Z is commutative,
= [b] + [a].
Therefore, (Z,,, +) is an abelian group.
Now we define multiplication operation on Z,,. Suppose that [a] = [a/] and [b] = [0']. Then
a—a =nkyand b — b’ = nko, for some kq, ko € Z. Then
ab—a't =(a—a)b+ad(b-1)
= nkib+ a'nks
= Tl(/{llb + a,kg),
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implies that [ab] = [a’d']. Thus we have a well-defined binary operations on Z,, (called the
multiplication of integers modulo n) defined by

[a] - [b] := [ab], ¥ [a],[b] € Zp.

Clearly the multiplication modulo n operation on Z,, is both associative and commutative.
Note that,
(1] - la] = [a] = [a] - [1], ¥ [a] € Zy.

Therefore, [1] € Z,, is the multiplicative identity in Z,,. Moreover, the multiplication distributes
over addition from left and right on Z,,. Indeed, we have

[a] - ([b] + [¢]) = [a] - [b] + [a] - [d],
and  ([a] +[b]) - [¢] = [a] - [¢] + [] - [] .
Such a triple (Z,,, +, -) is called a ring. Since n > 2 by assumption, n does not divide 1 in Z,,. So
[0] # [1] in Z,, by Proposition 2.1.28. Since for any [a] € Z,,, we have [0] - [a] = [0 - a] = [0] # [1],
we see that [0] € Z,, has no multiplicative inverse in Z,,. Therefore, (Z,,, -) is just a commutative
monoid, but not a group.

We now find out elements of Z,, that have multiplicative inverse in Z,,, and use them to
construct a subset of Z, which forms a group with respect to the multiplication modulo n
operation. Recall that given n, k € Z, we have ged(n, k) = 1 if and only if there exists a,b € Z
such that an + bk = 1 (see Corollary 1.3.8). Use this to verify that if [k] = [£'] in Z,, then
ged(n, k) = 1if and only if ged(n, k') = 1. Thus we get a well-defined subset

U, :={[k] € Z,, : ged(k,n) =1} C Z,.

Note that, [0] ¢ U,. If [ki1], [k2] € U,, then ged(ki,n) = 1 = ged(ke,n). Then there exists
a1, b1, as, by € Z such that

a1k1 + bln =1
and asky + bon = 1.

Multiplying these two equations, we have
(ara2)(k1ks) + (a1k1ba + agkeby + b1bo)n = 1.
Then we have ged(k1ka,n) = 1. Therefore,
(k1] - [ko] = [k1ko] € Un, V [k1], [k2] € U,.

Verify that (U,, -) is an abelian group. If p > 1 is a prime number (see Definition 1.3.10), show
that U, = Z, \ {[0]}, as sets.
Exercise 2.1.33. Let X be a non-empty set. Let P(X) be the set of all subsets of X; called the
power set of X. Given any two elements A, B € P(X), define

AN B:=(A\B)U(B\A).

The set A A B is known as the symmetric difference of A and B. Show that (P(X),A) is a
commutative group. (Hint: The empty subset ) C X acts as the neutral element in P(X), and
every element of P(X) is inverse of itself).

Exercise 2.1.34 (Direct product of two groups). Let (4, ) and (B, x) be two groups. Show that
the Cartesian product G; x G is a group with respect to the binary operation on it defined by

(al,bl)(ag,bg) = (a1 * a9, bl *bg), A (al,bl), (G,27b2) S A X B.

The group A x B defined above is called the direct product of A with B.
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2.2 Subgroup

Definition 2.2.1 (Subgroup). Let G be a group. A subgroup of G is a subset H C G such that H
is a group with respect to the binary operation induced from G. A subgroup H of G is said to
be proper if H # G. A subgroup whose underlying set is singleton is called a trivial subgroup.
If H is a subgroup of G, we express it symbolically by H < G.

For example, Z is a subgroup of Q; S* is a subgroup of C* etc.

Exercise 2.2.2. For each integer n, let nZ := {nk : k € Z}.

(i) Show that nZ is a proper subgroup of Z, for alln € Z \ {1, —1}.
(ii) Show that any subgroup of Z is of the form nZ, for some n € Z.

Exercise 2.2.3 (Group of n' roots of unity). Fix an integer n > 1, and let

pn i ={C€C| (" =1}
Show that y,, is a subgroup of the circle group S*.
Exercise 2.2.4. Show that a finite subgroup of C* of order n is p,,.
Exercise 2.2.5. Show that {1, —1,i, —i} is a subgroup of C*, where i = \/—1.
Exercise 2.2.6. For each integer n > 1, show that there is a commutative group of order n.

Remark 2.2.7. It is easy to see that any subgroup of an abelian group is abelian. However,
the converse is not true, in general. For example, one can easily check that S3 is a non-abelian
group whose all proper subgroups are abelian.

Lemma 2.2.8. Let G be a group. A non-empty subset H C G forms a subgroup of G if and only if
ab=' € H, forall a,b € H.

Proof. Since H # (), there is an element a € H. Thene = aa~! € H. In particular, forany b € H,
its inverse b~! = eb~! € H. Then for any a,b € H, their product ab = a(b~')~! € H. Thus
H is closed under the binary operation induced from G. Associativity is obvious. Thus, H is a
subgroup of G. O

Exercise 2.2.9. Let G be a group. Show that a non-empty subset H C G forms a subgroup of G
ifand only if a='b € H, forall a,b € H.

Exercise 2.2.10. Let G be a group. Let H be a finite non-empty subset of G. Show that H forms
a subgroup of G if and only if ab € H, for all a,b € H. Show by an example that this fails if
is infinite.

Exercise 2.2.11 (Special linear group). Fix an integer n > 1, and let
SL,(R) = {A € GL,(R) : det(A) =1},

where det(A) denotes the determinant of the matrix A. Show that SL,, (R) is a non-trivial proper
subgroup of GL,,(R). Also show that SL,, (R) is non-commutative for n > 2.

Exercise 2.2.12 (Orthogonal and special orthogonal groups). Fix an integer n > 1, and let
On(R) := {A € M4 (R) : A"A =1, = "AA},

where ‘A denotes the transpose of A (i.e., the n x n matrix whose (7, j)-th entry is equal to the
(j,i)-thentry of A, foralli,j € {1,...,n}.
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(i) Show that O, (R) is a subgroup of GL,,(R).

(ii) Show that SO, (R) :={A € O,(R) : det(A) = 1} is a subgroup of both O,,(R) and SL,,(R).
The groups O, (R) and SO, (R) are called the orthogonal group and the special orthogonal group
over R, respectively.

Exercise 2.2.13 (Unitary and special unitary groups). Fix an integer n > 1, and let
Un(C) :={A € Mpxn(C) : AA* =1, = A" A},

where A* = A is the n x n matrix over C whose (1, j)-th entry is equal to the complex conjugate
of the (j,¢)-th entry of A, foralli,j € {1,...,n}.
(i) Show that U,,(C) is a subgroup of GL,,(C).
(ii) Show that U;(C) = S*.
(iii) Show that SU,,(C) := {A € U,(C) : det(A) = 1} is a subgroup of both U,,(C) and SL,,(C).
The groups U, (C) and SU,,(C) are called the unitary group and the special unitary group over C,
respectively.

Proposition 2.2.14 (Center of a group). Let G be a group. Then
Z(G):={a€e G :ab=ba,Vb € G}

is a commutative subgroup of G, called the center of G.

Proof. Clearly e € Z(G). Let a € Z(G). Then for any ¢ € G we have

ac=ca = c=a ‘ca = ca ' =atcaat = a_lc,

and hence a! € Z(G). Then for any a,b € Z(G), we have c(ab=1)c™! = cac™tebte™! = ab7},
for all ¢ € G, and hence ab™! € Z(G). Therefore, Z(G) is a subgroup of G. Clearly Z(G) is
commutative. O

Exercise 2.2.15. Show that a group G is commutative if and only if Z(G) = G.
Exercise 2.2.16. Find the centers of S3, GL,,(R) and SL,,(R), where n € N.

Exercise 2.2.17 (Centralizer). Let G be a group. Given an element a € G show that the subset
Cg(a) :={be G:ab=ba}

is a subgroup of G, called the centralizer of a in G. Show that Z(G) = [\ Ca(a).
acG

Lemma 2.2.18. Let G be a group, and let { H,, }oc be a non-empty collection of subgroups of G. Then

( Hy is a subgroup of G.
acA

Proof. Since e € H,, foralla € A, wehavee € (| H,. Leta,b € (| H, be arbitrary. Since
acA aEN

a,b € H,, forall o € A, we have ab~! € H,, for all a € A, and hence ab~! € (| H,. Thus
aEN

(| H, is a subgroup of G. O

aEN

Corollary 2.2.19. Let G be a group and S a subset of G. Let € be the collection of all subgroups of G

that contains S. Then (S) := () H is the smallest subgroup of G containing S.
He%6s
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Proof. By Lemma2.2.18,(S) := () H isasubgroup of G containing S. If H' is any subgroup
HEe¥Cs
of G containing S, then H' € Cg, and hence (S):= (| HC H'. O
HeCs

Exercise 2.2.20. Recall Exercise 2.2.2, and find the subgroup 2Z N 3Z of Z.
Exercise 2.2.21. Is 27 U 3Z a subgroup of Z? Justify your answer.
Exercise 2.2.22. Show that a group cannot be written as a union of its two proper subgroups.

Definition 2.2.23. Let G be a group and S C G. Thegroup (S) := ()| H iscalled the subgroup
HeCs
of G generated by S. If S is a singleton subset S = {a} of G, we denote by (a).

Exercise 2.2.24. Let G be a group. Find the subgroup of G generated by the empty subset of G.
Proposition 2.2.25. Let G be a group, and let S be a non-empty subset of G. Then

(S)y={af*---a"|neN, and a; € S,e; € {1,-1},Vie{1,2,...,n}}.
Proof. Let
K:={al*---a;"|neN, and a; € S,e; € {1,-1},Vie {1,2,...,n}}.

Clearly S ¢ K C G. Takingn =2,a1 =az =a € S,e; = land ez = —1, wehavee = aa™! €
K. Leta,be K. Thena =a$'--- afr and b = b{l -+ bfm, for some a;,b; € S, e;, f; € {1,-1},
1<i<n1<j<m,andm,n € N. Thenab™! = af* - al - (b{1~~ blm)~t = a$t - aln -
b fm - by € K. Therefore, K is a subgroup of G containing S. Then by Proposition 2.2.19,
we have (S) C K. To see the reverse inclusion, note that if S C H, for some subgroup H of G,

then all the elements of K lies inside H. Therefore, K C (| H = (S5). O
He¥6s

Definition 2.2.26. A group G is said to be finitely generated if there exists a finite subset S C G
such that the subgroup generated by S is equal to G, i.e., (G) = G.

Example 2.2.27. (i) Any finite group is finitely generated.
(ii) The additive group (Z, +) is finitely generated.

Exercise 2.2.28. Let G and H be finitely generated groups. Verify if the direct product G x H
of G and H, as defined in Exercise 2.1.34, is finitely generated.

Example 2.2.29. Let G be a group. Given an element a € G, the subgroup of G generated by a
can be written as
(a)={a" : ne€Z};

and is called the cyclic subgroup of G generated by a.

Definition 2.2.30. Let G be a group. The order of an element a € G is the smallest positive
integer n, if exists, such that a” = e. If no such positive integer n exists, we say that the
order of a is infinite. We denote by ord(a) the order of a € G. In other words, if we set
Se:={n€Z:n>1and a™ = e}, then

infS,, if S, #0, and
ord(a) ::{ s, if Saiv).

Exercise 2.2.31. Let G be a group and a,b € G be such that ab = ba. Show that (ab)” = a™b",
foralln € N.

Exercise 2.2.32. Let (G be a group. Let a,b € G be elements of finite orders.

(i) If a™ = e, for some m € N, then show that ord(a) | m.
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ord(a)

ii) Show thatord(a") = —F—————
(ii) Show that ord(a™) ged (1, ord())

,forall n € N.

(iii) Show that both a and a~! have the same order in G.
(iv) Show that both ab and ba have the same finite order in G.

Exercise 2.2.33. Let G be a group, and let a and b two elements of G of finite orders with ab = ba.

(i) Show that ord(ab) divides lcm(ord(a), ord(b)).
(ii) If ged(ord(a),ord(d)) = 1, show that ord(ab) = ord(a) ord(b).

Remark 2.2.34. If we remove the assumption that ab = ba from the above Exercise 2.2.33 we can
say absolutely nothing about the order of the product ab. In fact, given any integers m,n,r > 1,
there exists a finite group G with elements a,b € G such that ord(a) = m, ord(b) = n and
ord(ab) = r. The proof of this surprising fact requires some advanced techniques, and may
appear at the end of this course.

Exercise 2.2.35. Consider the matrices

0 1 0 2
A= <1 0> and B = (1/2 0>
in GLy(R). Show that ord(A4) = ord(B) = 2 while ord(AB) = co. Consequently, the subgroup

(A, B) < GL2(R) generated by two order 2 elements of GL2(R) is infinite.

Exercise 2.2.36. Let G be an abelian group. Let H := {a € G : ord(a) is finite}. Show that H is
a subgroup of G.

Exercise 2.2.37. Show that any finite group of even order contains an element of order 2.

Exercise 2.2.38. Let G be a group such that any non-identity element of G has order 2. Show
that G is abelian.

Exercise 2.2.39. Find two elements o and 7 of S3 such that (o, 7) = Ss.

Exercise 2.2.40 (Derived subgroup). Let G be a group. The commutator of two elements a,b € G
is the element [a, b] := aba='b~! € G. Given a,b € G, show that

(i) [a,b] = eif and only if ab = ba;
(i) [a,b]"! = [b,a]; and
(iti) gla,blg™" = [gag~",gbg~'], forallg € G.

The subgroup [G,G] := ([a,b] : a,b € G) of G generated by all commutators of elements of
G is called the derived subgroup or the commutator subgroup of G. Show that [G, G] is a trivial
subgroup of G if and only if G is abelian.

2.3 Cyclic group

Let G be a group. For any element a € G, we consider the subset
(a) :={a" :neZ} CG.

Clearly e € (a), and for any two elements a™,a™ € (a), we have a™ - (b™)™1 = "™ € (a).
Therefore, (a) is a subgroup of G, called the cyclic subgroup of G generated by a. If H is any
subgroup of G with a € H, then a~! € H,and hence a" € H, for alln € Z. Therefore, (a) C H.
Therefore, (a) is the smallest subgroup of G containing a.
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Definition 2.3.1. A group G is said to be cyclic if there is an element ¢ € G such that G = (a).
The element «a is called the generator of {(a).

Remark 2.3.2. If G is a cyclic group generated by a € G, then (a~!) = G. Therefore, if a* # ¢,
the cyclic group (a) has at least two distinct generators, namely a and a~'. We shall see later
that if a cyclic group (a ) has at least two distinct generators, then we must have a? # e.

For example, the additive group Z is a cyclic group generated by 1 or —1. It is clear that a
cyclic group may have more than one generators. For example, Zs is a cyclic group that can be
generated by [1] or [2].

Example 2.3.3. Z,, is a finite cyclic group generated by [1] € Z,,. To see this, note that for any
[m] € Zy, we have [m] = [m - 1] = m[l] € ([1]) C Z,. Therefore, Z, C ([1]), and hence
Zn = ([1])-

Proposition 2.3.4. Fix an integer n > 2. Then [a] € Z,, is a generator of the group Z,, if and only if
ged(a,n) = 1.

Proof. Suppose that ([a] ) = Z,. Then there exists m € Z such that [1] = m[a] = [ma]. Then
n | (ma — 1) and so ma — 1 = nd, for some d € Z. Therefore, ma + n(—d) = 1, and hence by
Corollary 1.3.8 we have gcd(a,n) = 1. Conversely, if gcd(a,n) = 1, then there exists m,q € Z
such thatam+ng = 1. Thenn | (1—am) and hence [a] = [1] in Z,,. Hence the result follows. O

Corollary 2.3.5. For a prime number p > 0, Z,, has p — 1 distinct generators.

Clearly any cyclic group is abelian. However, the converse is not true in general. For exam-
ple, the Klein four-group K4 in Example 2.1.9 (iii) is abelian but not cyclic (verify).

Exercise 2.3.6. Give an example of an infinite abelian group which is not cyclic.

Proposition 2.3.7. Subgroup of a cyclic group is cyclic.

Proof. Let G = (a) be a cyclic group generated by a € G. Let H C G be a subgroup of G. If
H = {e} is the trivial subgroup of G, then H = (e ). Suppose that H # {e}. Then there exists
b e Gsuchthatb # eand b € H. Since G = (a ), we have b = a", for some n € Z. Since H is a
group and a” =b e H,wehavea™ = b—! € H. Therefore,

S:={keN:d*ce H} CN

is a non-empty subset of N. Then by well-ordering principle of (N, <) (see Theorem 1.1.25) S
has a least element, say m € S. We claim that H = (a™). Clearly (a™) C H. Let h € H be
arbitrary. Since H C G = (a), we have h = a", for some n € Z. Then by division algorithm
(see Theorem 1.3.1) there exists ¢, € Z with 0 < r < m such that n = mq + r. Then o" =
a" ™ = q"(a™)"? = h(a™)"9 € H. Since m is the least element of S, we must have r = 0.
Then n = mg, and so we have h = a™ = a™q € (a™). Therefore, H C (a™ ), and hence
H=(a™). O

Exercise 2.3.8. Show that any subgroup of Z is of the form nZ := {nk : k € Z}, for some n € Z.
Lemma 2.3.9. Let G = (a) be an infinite cyclic group. Then for all m,n € Z with m # n, we have
a # a™.

Proof. Suppose not, then there exists m,n € Z with m > n such that «™ = a™. Then ¢™ " =
a™(a™)~! = e. Since m — n is a positive integer, the subset

S:={keN:ad"=¢}CN

is non-empty. Then by well-ordering principle S has a least element, say d. We claim that
G ={d":keZ witho <k <d-1}. Clearly {a* : k € Z with0 < k < d -1} C G.
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Let b € G be arbitrary. Then b = a", for some n € Z. Then by division algorithm (Theorem
1.3.1), there exists ¢, € Z with 0 < r < d such that n = dq + r. Since d € S, we have
al = e. Thenb = a" = a¥*" = (a?)%" = a" € {a* : k € Z with0 < k < d — 1} implies
GC{a*:keZ with0<k <d—1},and hence G = {a* : k € Z with0 < k < d— 1}. Thisis
not possible since G is infinite by our assumption. Hence the result follows. O

Corollary 2.3.10. Let G = (a) be a cyclic group generated by a € G. Then G is infinite if and only if
ord(a) is infinite.

Proof. If G = (a) is infinite, then for any non-zero integer n, we have a" # a° = e by Lemma
2.3.9. Therefore, ord(a) is infinite. Conversely, if ord(a) is infinite, then a™ # e, for alln € Z\{0}.
Since a" = o™ implies a™ ™" = ¢, themap f : Z — G given by f(n) = a", Vn € Z, is injective.
Therefore, since Z is infinite, G must be infinite. O

Corollary 2.3.11. Let G be a finite cyclic group generated by a. Then |G| = ord(a).

Proof. Since G is finite, ord(a) must be finite by Corollary 2.3.10. Suppose that ord(a) = n € N.
Then for any two integers r,s € {k € Z : 0 < k < n — 1}, a" = o® implies a"~* = ¢, and hence
r = s, because |r — s| < n = ord(a). Then all the elements in the collection € := {a* : k €
Zwith 0 < k < n — 1} are distinct, and that ¢ has n elements. Clearly ¥ C G. Given any
be G={(a),b=a", for some m € Z. Then by division algorithm (Theorem 1.3.1) there exists
q,7 € Zwith 0 < r < nsuch thatm = ng +r. Thenb = a™ = a1 = (a")%" = a" € €, since
a™ = e. Therefore, G C ¢, and hence G = €. Thus, |G| = ord(a). O

Corollary 2.3.12. Let G be a finite group of order n. Then G is cyclic if and only if it contains an
element of order n.

Proof. If G is cyclic, then the result follows from Corollary 2.3.11. Conversely, if G contains an
element a of order n, then it follows from the proof of Corollary 2.3.11 that the cyclic subgroup
(a) of G has n elements, and hence (a) = G. O

Corollary 2.3.13. Any non-trivial subgroup of an infinite cyclic group is infinite and cyclic.

Proof. Let G be an infinite cyclic group generated by a € G. Let H be a non-trivial subgroup of
G. Since H is cyclic by Proposition 2.3.7, we have H = (b), where b = a" for some r € Z \ {0}.
Since G is an infinite cyclic group, by above Lemma 2.3.9, we have 0™ = ™" # a™" = b" for
m # n in Z. Therefore, H = (b) = {b* : k € Z} is infinite. O

Proposition 2.3.14. Let G be a finite cyclic group of order n. Then for each positive integer d such that
d | n, there is a unique subgroup H of G of order d.

Proof. Let G = (a) be a finite cyclic group of order n. Then ord(a) = n by Corollary 2.3.11.
Since d | n, there exists ¢ € Z such that
n = dq.

Let H := (a?) be the cyclic subgroup of G generated by a?. Since G is finite, so is H. Since
ord(a) = n, we see that d is the least positive integer such that (a?)? = a9? = a" = e. Therefore,
ord(a?) = d, and hence |H| = d by Corollary 2.3.11.

We now show uniqueness of H in G. If d = 1, then the trivial subgroup {e} C G is the only
subgroup of G of order d = 1. Suppose that d > 1. Let H and K be two subgroups of G of order
d, where d | n. Then by Proposition 2.3.7 we have H = (@™ ) and K = (a™ ), for some m,n € N.
Since subgroup of a finite group is finite, by Corollary 2.3.10 we have ord(a") = d = ord(a™).
By division algorithm (Theorem 1.3.1) there exists unique integers k, r with 0 < r < ¢ such that
m = kq + r. Then dm = kdq + dr = kn + dr gives

e = (am)d — adm _ (an)kadr _ adr.
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Since 0 < r < ¢, we have 0 < dr < dq = n. If r # 0, this contradicts the fact that ord(a) = n.
Therefore, we must have r = 0, and hence a™ = a*%*" = (a*)? € (a*) = H. Therefore, K C H.
Since |H| = |K| = d, wehave H = K. O

Proposition 2.3.15. An infinite cyclic group has exactly two generators.

Proof. Let G = (a) = {a" : n € Z} be an infinite cyclic group. Let b € G be any generator of G.
Then b = a”, for some n € Z. Similarly, since « € G = (b), we have a = b™, for some m € Z.
Then we have a = b = (a™)™ = a™". Then by Lemma 2.3.9 we have mn = 1. Since both m
and n are integers, we must have m, n € {1, —1}. Therefore, b € {a,a™'}. O

Exercise 2.3.16. Let G = (a) be a finite cyclic group of order n. Given any k¥ € N with 1 <
k < n — 1, show that (a*) = G if and only if ged(n, k) = 1. Conclude that G has exactly ¢(n)
number of generators, where ¢(n) is the number of elements in the set {k € N : ged(n, k) = 1}.
(Hint: Use the idea of the proof of Proposition 2.3.4.)

Remark 2.3.17. The map ¢ : N — N given by sending n € N to the cardinality of the set
{keN:1<k<n and ged(n,k) =1},
is called the Euler phi function.

Exercise 2.3.18. Give an example of a non-abelian group G such that all of its proper subgroups
are cyclic.

Exercise 2.3.19. Show that a non-commutative group always has a non-trivial proper sub-
group.

Exercise 2.3.20. Show that a group having at most two non-trivial subgroups is cyclic.

Exercise 2.3.21. Let G be a finite group having exactly one non-trivial subgroup. Show that
|G| = p?, for some prime number p.

Exercise 2.3.22. Give examples of infinite abelian groups having

(i) exactly one element of finite order;

(ii) all of its non-trivial elements have order 2.
Exercise 2.3.23. (i) Show that (Q, +) is not cyclic.

(ii) Show that any finitely generated subgroup of (Q, +) is cyclic.
(iii) Conclude that (Q, +) is not finitely generated.

(iv) Give an example of a proper subgroup of (Q, +) that is not cyclic.

2.4 Product of subgroups
Definition 2.4.1. Let G be a group. For any two non-empty subsets H and K of G, we define
their product HK := {hk : h€ H, k € K}.

Exercise 2.4.2. Show by example that H K need not be a group in general even if both H and
K are subgroups of a group.

Theorem 2.4.3. Let H and K be two subgroups of G. Then HK is a group ifand only if HK = KH.
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Proof. Note that, forany h € H and k € K wehaveh = h-e € HKand k =e-k € HK.
Therefore, HC HK and K C HK.

Suppose that HK is a group. Then kh € HK, forallh € H C HK and k € K C HK, and
hence KH C HK. Leth € H and k € K. Since HK is a group, hk € HK implies (hk)~! € HK,
and so (hk)~' = ik, for some hy € H and k; € K. Then hk = ((hk)=) ™" = ki 'hy' € KH.
Therefore, HK C KH, and hence HK = KH.

Conversely suppose that HK = KH. Let h1ky, hoke € HK with hy,hy € H and k1, ke € K.
Since ky 'hy' € KH = HK, there exists hy € H and k3 € K such that k; 'hy ' = hzks. Again
kihs € KH = HK implies there exists hy € H and k4 € K such that k1h3 = haks. Now

(hiky)(hoka) ™ = hikiky 'hyt
= hykyhsks
= h1h4]€4k‘3 c HK.

Therefore, HK is a subgroup of G. O
Corollary 2.4.4. If H and K are subgroups of a commutative group, then HK is a group.

Notation: For a finite set S, we denote by |S| the number of elements of S.

Remark 2.4.5. The phrase “number of elements of S" is ambiguous when S is not a finite
set. For example, both Z and R are infinite sets, but there are some considerable differences
between “the number of elements” of them; Z is a countable set, while R is an uncountable
set. So the “number of elements” (whatever that means) for Z and R should not be the same.
For this reason, we need an appropriate concept of “number of elements" for an infinite set
S, known as the cardinality of S, also denoted by |S|. When S is a finite set, the cardinality
of S is determined by the number of elements of S. The cardinality of Z is denoted by X,
(aleph-naught) and the cardinality of R is 2", which is also denoted by X; or c.

Definition 2.4.6. The order of a group G is the cardinality |G| of its underlying set G. For a
finite group, its order is precisely the number of elements in it.

For example, the order of Ss is 6, while the order of Z is X,.
Lemma 2.4.7. If H and K are finite subgroups of a group G, then

|- K]
|[HK| = K|
Proof. For each positive integer n, let J,, := {k € N: k < n}. Let H = {h; : ¢ € J,} and
K ={kj:j€ Jn}. Then HK = {hik; : i € J,, j € Jp}. To find the number of elements
of HK, for each pair (i,j) € J,, x Jy,, we need to count the number of times h;k; repeats in
the collection € := {h;k; : (i,j) € J X I }. Fix (4,5) € Jn X Jp. If hik; = hykg, for some
(p,q) € Jp X Jpn, then t := h;lhi = qu;l € HN K. So any element h,k, € €, which coincides
with h;k; is of the form (h;t~1)(tk;), for some ¢ € H N K. Conversely, for any ¢ € H N K, we
have (h;t=1)(tk;) = hi(t"'t)k; = hiek; = hik;. Therefore, the element h;k; appears exactly
|H N K|-times in the collection €, and hence we have

|H|-|K|
HK|= ——7—.
[HK] |HNK]|

This completes the proof. O

Proposition 2.4.8. Let H and K be subgroups of G. Then HK is a subgroup of G if and only if
HEK = (HUK).
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Proof. Suppose that HK is a subgroup of G. Since H C HK and K C HK,wehave H UK C
HK, and hence (H U K ) C HK. Since ( H U K ) is a group containing H U K, for any h € H
and k € K we have hk € (H U K ). Therefore, HK C (HU K ), and hence HK = (HU K ).
Converse is obvious since ( H U K ) is a group and HK = ( H U K ) by assumption. O

2.4.1 Lattice diagram

Definition 2.4.9. A relation “ < ” on a non-empty set S is said to a partial order relation if it
is reflexive, anti-symmetric and transitive (see Definition 2.1.27). A partially ordered set (or, in
short a poset) is a pair (S, <), where S is a non-empty set together with a partial order relation
“ <7 onit.

Let (S, <) be a poset. Given a collection of elements {a) : A € A} from S, an elementc € S
is said to be an

(i) upper bound of {ay : A € A}in (S,<)ifay <¢, VA €A.
(ii) lower bound of {ay : A € A} in (S,<)ifc < ay, VA €A.

An element ¢ € S is said to be

(i) aleast upper bound of {ay : A € A}in (S, <) if

* ¢y is an upper bound of {a) : A € A} in (S, <), and
e if dis an upper bound of {a) : A € A} in (S, <), then ¢y < d.

(ii) a greatest lower bound of {ax : A € A} in (S, <) if

* ¢gis alower bound of {ay : A € A} in (S, <), and
e if dis any lower bound of {a) : A € A} in (S, <), then d < ¢.

Lemma 2.4.10. Let (S, <) be a poset. Let {ay : A € A} be a non-empty collection of elements of S. If
least upper bound (resp., greatest lower bound) of {ax : X € A} exists in (S, <), then it must be unique.

Proof. Suppose that ¢y and dy be least upper bounds of {ay : A € A} in (S, <). Then ¢y < dy
and dy < ¢p. Since “ < ” is anti-symmetric, we have ¢y = dy. The same argument shows that,
the greatest upper bound of {a : A € A} in (S, <), if exists, is unique. O

Definition 2.4.11 (Lattice). A partially ordered set (S, <) is said to be a lattice if the least upper
bound and the greatest lower bound of any two elements of S existin S.

Proposition 2.4.12. Let G be a group, and let S be the set of all subgroups of G. Define a relation < on
S by setting
H<KIifHCK.

Then (S, <) is a lattice.

Proof. Clearly ‘<’is a partial ordering relation on S (verify). Let H and K be any two subgroups
of G. As we have noticed before, ( H U K is the smallest subgroup of G containing H and K,
it is the least upper bound of {H, K} inside (S, <). Since HN K < H and H N K < K, and for
any subgroup J of G with J C H and J C K, we have J C H N K, we see that H N K is the
greatest lower bound of {H, K} in (S, <). O

Definition 2.4.13. Let G be a group. Given any two subgroups H and K of G, if H < K, we
place H below K and draw a vertical line segment between them to indicate that H is sitting
inside K. This process generates a diagram, known as the lattice diagram of subgroups of G.



2.5. Permutation Groups 31

Example 2.4.14. Consider the group pus = {¢ € C* : ¢* = 1} = {1,-1,/~1,—/—1} of 4
roots of unity. Note that po := {1, —1} and py := {1} are only subgroups of G = 4, and that
11 < p2 < py. Then the lattice structure of 114 can be written as

Ha = {17 717 \/ja 7\/771}

M2 = {17 _1}

H1 = {1}

Exercise 2.4.15. Write down all subgroups of the symmetric group S3 and the associated lattice
structure. The subgroup of S5 generated by a 2-cycle o € S; consist of o and the neutral element
only. There are three such subgroups. There are only two 3-cycles in S3, namely (12 3), (132),
and they satisfies (12 3)? = (132) and (12 3)3 =e. So, {((123)) = {¢,(123),(132)}. Thus the
lattice structure of (S3, <) can be written as follows.

J—

{e,(123),(132)}

{e,(12)} {e,(13)} {e,(23)}

o~

2.5 Permutation Groups

Let X be a non-empty set. A permutation on X is a bijective map o : X — X. We denote by
Sx the set of all permutations on X. For notational simplicity, when | X| = n, fixing a bijection
of X with the subset J,, := {1,2,3,...,n} C Nwe may identify Sx with S,,. Anelemento € S,
can be described by a fwo-column notation as follow.

1 o(1)
1 2 3 ... n 2 0(2)

(2.5.1) o= <U(1) 5(2) o(3) --- a(n)> or, 0=
n— o(n)

Since elements of \S,, are bijective maps of J,, onto itself, composition of two elements of .5, is
again an element of S,,. Thus we have a binary operation

o: S, xS, — Sy, (0,7)—To00.

For example, consider the elements o, 7 € S4 defined by

/12 3 4 (1 2 3 4
=\2 41 3)>77\1 3 2 4/
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Then their composition 7 o ¢ is the permutation

(1234
T°9=\3 41 2

Clearly composition of functions J,, — J,, is associative, and for any o € .S,, its pre-composition
and post-composition with the identity map of I, is o itself. Also inverse of a bijective map is
again bijective. Thus for all integer n > 1, (S, o) is a group, called the Symmetric group (or, the
permutation group) on Jp,.

Remark 2.5.2. For each integer n > 0, the symmetric group S,,+; can be understood as the
group of symmetries of a regular n-simplex inside R"*!. The standard n-simplex

A" = {(tg, ... tn) ER"™ N "ty =1,4>1,Vj=0,1,...,n} CR"

j=1
is an example of a regular n-simplex. This has vertices the unit vectors {eg, e1,...,e,} in R" 1,
where

€0 :(130507 '5070)7

e1 =(0,1,0,...,0,0),

For example,

e Ajsa point,
e Al is the straight line segment [—1,1] C R C R?,
e A?isan equilateral triangle in the plane R?,
e A% is aregular tetrahedron in R?, and so on.
Exercise 2.5.3. Show that S is a trivial group, and S, is an abelian group with two elements.

Lemma 2.5.4. For all integer n > 3, the group S,, is non-commutative.

Proof. Let o, T € S, be defined by

9, if k=1 3, if k=1
ok)=4 1, if k=2 ,and 7(k) =14 1, if k=3 .
k, if kel,\{1,2} k, if kel,\{1,3}

Since Too(1) =2and oo7(1) = 3, wehave o7 # T7oo. Therefore, S,, is non-commutative. [J

Let o € S), be given. Consider its two-column notation as in (2.5.1).

(R1) Ifo(k) = k, for some k € J,,, we may drop the corresponding column from its two-column
notation, and rearrange its columns, if required, to get an expression of the form

o= kl k? o kjrfl kr
o(k1) o(ke) - olke—1) o(kr))’
where k1, ..., k. are all distinct.
By re-indexing, if required, we can find a partition of {k1, ..., k,} into disjoint subsets, say

{kl, .. .7kr} = U{ki,la . . '7ki,?”z‘}
=1
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withm > 1,2 < r; < r, forali e {1,...,m}, and r; + --- + r,, = 7, such that for all
i€ {l,...,m} wehave

kijy1, if je{l,...,r;—1},
(25.5) o(kij) = ki1, if j=mr; and
kij> if k’ij EJn\{k‘l,...,kr}.

Then ¢ can be expressed as

kll k1T71 kl’r ...... kml km’l‘, ka 1
256 = ’ 1 1 ’ sT'm sT'm .
(2.5.6) o (k1,2 R P TR kma ot kmr  kma )

When m = 1 in the above notation, o can be expressed as

_ k'l k'2 kT—l kr
(25.7) a—(kQ T, kl)'

Such a permutation is called a cycle.

Definition 2.5.8 (Cycle). An element ¢ € S, is called a r-cycle or a cycle of length r if there
exists distinct r elements, say k1,...,k. € J, := {1,...,n} such that o(k) = k, for all k €
I\ {k1,..., k- } and

ki if e {11},
olk:) = { ke if i=r
In this case, o is expressed as 0 = (k1 k2 --- k). A 2-cycle is called a transposition.

Remark 2.5.9. Note that according to our definition 2.5.8, a cycle in S,, always have length at
least 2. So we don't talk about 1-cycle as used in some of the standard text books.

With the notation above, the permutation o in (2.5.6) can be written as a product of cycles
o= kl,l e klmlfl kl,rl o ° km,l T km,rmfl km,rm
ki - kiy  kin kma2 - kmpr, km.1
= (kl,l Tt kl,rlfl kl,rl) ©0:-+0 (km,l e km,rmfl km,rm)

Remark 2.5.10. Transpositions are of particular interests. We shall see later that any o € S,, can
be written as product of either even number of transpositions or odd number of transpositions,
and accordingly we call o € S, an even permutation or an odd permutation.

Example 2.5.11. Using cycle notation, the group S3 can be written as
S3 = {6,(1 2)a(1 3)a(2 3)a(1 2 3)7(1 3 2)}7

where (1 2), (1 3) and (2 3) are transpositions. However, we can write 3-cycles as product of
2-cyclesas (1 2 3) = (2 3)o(1 3)and (1 3 2) = (2 3)o (1 2). Also, the identity element e
can be writtenase = (1 2)o (1 2)ore= (1 3)o (1 3) etc. So the decomposition of o € S,, as a
product of transpositions is not unique.

Proposition 2.5.12. Let 0 = (k1 ko --- k.) € Sy, be a r-cycle. Then for any T € S,, we have
ot = (1(k1) T(k2) - T(ky)).
Proof. Note that we have

(rar 1) (7 (k)
and (707'71)(7(1%))

T(O‘(kl)) :T(ki+1), Vie {1,...,7“— 1}7
T(o(k)) = 7(k1) .
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It remains to show that (ro771)(k) = k, Vk € J, \ {r(k1),...,7(k.)}. For this, note that
k) € J, \ {k1,...,k-}, and so o(771(k)) = 771(k). Therefore, we have (ror~1)(k) =
7(o(r7Y(k))) = (7 1(k)) = k. This completes the proof. O

Corollary 2.5.13. Let o € S, is a product of pairwise disjoint cycles o1,...,0, in S,. Suppose
that o; = (ki -+ kig,) € S, foralli € {1,...,r}. Then for any T € S, we have Tor=1 =
(r(k11) -+ 7(k1e,)) o o (t(kp1) -+ 7(kpe,)). In particular, both o and ToT=! have the same

cycle type.

Proof. Since Tor™! = (10177 ') 0+ 0 (r0,771), the result follows from Proposition 2.5.12. [

Proposition 2.5.14. Let o € S, be a cycle. Then o is a r cycle if and only if ord(c) = r.

Proof. Let 0 = (k1 ko --- k), for some distinct elements kq,...,%k. € J,. Then for any
ke J,\ {ki1,...,k} we have o(k) = k. It follows from the definition of the cyclic expression
of o given in (2.5.5) that ol(k1) = kiy1, foralli € {1,...,k—1}and 0" (k;) = k;. In general, for
any k; with 1 <4 < r we have 0" ~¥(k;) = k, and so 0" ~*1(k;) = k;. Therefore, 0" ~"T*(k;) = k,
forall ¢ € {1,...,r — 1}, and hence 0" (k;) = k;, for alli € {1,...,r}. Combining all these, we
have 0" (k) = k, for all k € J,,. In other words, " = ¢, where e is the identity element in S,,.
Since 0°(k;) = ksy1, forall s € {1,...,r — 1} (see (2.5.5)), we conclude that r is the smallest
positive integer such that o™ = e in S,,. Therefore, ord(o) = r. Conversely, suppose thatcisa t
cycle with ord(c) = r. But then as shown above ord(¢) = t, and hence t = r. O

Exercise 2.5.15. Show that the number of distinct = cycles in S, is

Solution: Note that, we can choose a r cycle from S, in

ways. Fixa r-cycle o = (k1 k2 --- k) € S,,. Note that, the cycles
(kl kg cee kr) and (kg kg cee kr ]{31)
represents the same element o € S,,. Note that, given any two permutations (bijective maps)

o, :4{2,3,...,r} = {2,3,...,1},

two r cycles (note that k; is fixed!)

(k1 kg2) -+ ko) and (k1 ky) - k)

represents the same element of S, if and only if ¢ = 1. Since there are (r — 1)! number of
distinct bijective maps {2,3,...,7} — {2,3,...,r} (verify!), fixing k1 in one choice of r cycle
(k1 ko --- k;)in Sy, considering all permutations of the remaining (r — 1) entries ks, ..., k.,
we get (r — 1)! number of distinct r cycles in S,,. Therefore, the total number of distinct r cycles
in S, is precisely

(r— 1) n! _ n!

rln—r)!  rin—r)’

This completes the proof. O

Definition 2.5.16. Two cycles 0 = (i1 i2--- i) and 7 = (j1 j2 --- js) In S, are said to be
disjoint if {i1,42,...,4} N {j1, 72, ,js} = 0.

Proposition 2.5.17. If o and T are disjoint cycles in Sy, show that c oT = T 0 0.
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Proof. Leto = (i1 i2--- i) and 7 = (j1 j2 --- js) be two disjoint cycles in S,,. Let k € J,, be
arbitrary. If &k ¢ {i1,...,6.}U{j1,...,Js}, theno(k) = k = 7(k) and hence (o7)(k) = (70)(k) in
this case. Suppose that k € {i1,...,i,}. Theno(k) € {i1,...,i,} and k & {ji1,...,js} together
gives To(k) = o(k) = o7(k). Interchanging the roles of ¢ and 7 we see that 7o(k) = o(k) =
o7(k) holds for the case k € {j1,...,js}. Therefore, o7 = 70. O

Lemma 2.5.18. For n > 2, any non-identity element of S,, can be uniquely written as a product of
disjoint cycles of length at least 2. This expression is unique up to ordering of factors.

Proof. For n = 2, S5 has only one non-identity element, which is a 2-cycle (1 2). Assume that
n > 3 and the result is true for any non-identity element of S, for 2 < r < n. Let o € S, be
a non-identity element. Since {c%(1) : i € N} C J,, and J, is a finite set, there exists distinct
integers i, j € N such that 0%(1) = ¢7(1). Without loss of generality we may assume that
i—j>1. Then¢'77(1) = 1. Then

{ieN:o'(1) =1}
is a non-empty subset of N, and hence it has a least element, say . Then all the elements in
A:={1,0(1),0%*1),...,0" (1)}
are all distinct, and defines an r-cycle
7:=(1 (1) o*(1) --- o" (1))

in S,,. Let B := J, \ A. In cases a‘ g is the identity map of B onto itself or B = (), we have
T = o and so o is a cycle in S,,. Assume that B # () and 7 := 0]  is not the identity map.
Then 7 is a non-identity element of Sk, where 2 < k := | B| < n. Then by induction hypothesis
m = my - - - 7y is a finite product of disjoint cycles 7y, ..., 7, of lengths at least 2 in Sj;,. Then for
eachi € {1,...,¢} we define 0; € S, by setting

(a) = mi(a), if a€ B,
oi\@) = a, if a€J,\B.

Then oy, ..., 04, T are pairwise disjoint cycles in S, and that 0 = oy - - - o7

For the uniqueness part, letc = 01 - - - 0, = 7 - - - 75 be two decomposition of ¢ into product
of disjoint cycles of lengths > 2 in S,,. We need to show that r = s, and there is a permutation
d € S, such that o; = 75(;), foralli € {1,...,r}. Suppose that o; = (k1 k2 --- k) witht > 2.
Then o (k1) # k1. Since 11,..., 7, are pairwise disjoint cycles of lengths > 2 in S,,, there is a
unique element, say d(i) € {1,...,r} such that 754 (k1) # k1. By reordering, if required, we
may write 75¢;y = (k1 v2 --- v,). Then we have

ky = oikr) = oak) = T156)(k1) = g,
ks = oi(ks) = o(k) = o(v2) 53y (v2)

U3,

ke = oilkr—1) = olkr—1) = o(v—1) = 756)(vr-1) = v

Ift <u, then k) =o;(k;) = o(ki) = o(v;) = vey1, which is a contradiction. Therefore, t = v and
hence g; = Ts(i)- Hence the result follows by induction on r. O

Definition 2.5.19 (Cycle type). Given ¢ € S, by Lemma 2.5.18 there exists a unique finite set
of pairwise disjoint cycles {o1,...,0,} in S, such that o = o1 o --- 0 g,. Since disjoint cycles
commutes by Proposition 2.5.17, by reindexing o;’s, if required, we may assume thatn; > ... >
n,, where n; = length(o;), for all j € {1,...,r}. Since o1,...,0, are pairwise disjoint cycles

in S, we have ¢ + > n; = n, for some non-negative integer ¢. If £ = 0, then the sequence
j=1
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(n1,...,n,) is called the cycle type of o, and if ¢ > 0, then the sequence (n1,...,n., f1,..., fe),
where f; = ... = f, = 1, is called the cycle type of .

Example 2.5.20. (i) The cycle typeof o := (1 2)o (3 6)o (4 5 7) € S7is (3,2,2).
(i) The cycle typeof 7:=(1 4 3)o (2 5) € S7is (3,2,1,1).
(iii) The cycle typeofé:=(1 3 5)0(2 4 7) € Sgis (3,3,1).

Definition 2.5.21. Two permutations ¢ and 7 in S, are said to be conjugate in S,, if there exists
§€ S, suchthatt =6oco0d L

Theorem 2.5.22. Two elements o, T € S,, are conjugate if and only if they have the same cycle type.

Proof. Conjugate permutations in S, have the same cycle type by Corollary 2.5.13. Conversely

suppose that 0,7 € S, have the same cycle type, say (nl, cespy f1,0 00y fo), whereng > - >
n, >2and f; = --- = f = 1, £ > 0 and that anJrZ =n. Letoc = 01000,
and 7 = 7y o --- o 7, where ¢;,7; are cycles in S, of lengths n; and n;, respectively. Sup-
pose that o; = (a;1 - ain,) and 75 = (bj1 -+ bjn,). If £ > 0, then we write the sub-
set In \{a;; : 1 <i <r1<j<n}as{a,...,a}. Then I, is a disjoint union of the
subsets {a11,...,a1n, }, - {@1, ..., am,. }, {a1,...,ar}. Similarly if we write the subset I, \
{bij : 1 < i <r,1 < j < n}as {bi,...,b}, then I, is a disjoint union of the subsets

{b11,-- b1y} {br1, -, brn, by {01, - -, be}. Then we define a map ¢ : I, — I, by sending
a;j to b;;, for all (¢,5) € {1,...,r} x {1,...,n;}, and by sending a;, to by, forall k € {1,...,/¢},
if £ > 0. Clearly ¢ is a bijective map, and hence is an element of S,,. Then Proposition 2.5.12
ensures that §0;0~! = 7;, foralli € {1,...,7}. Then we have

So6 t=6(0y---0,)07"
= (60167 1Y) - (00,67 1)
=TT
=T
This completes the proof. O

Exercise 2.5.23. Find the number of elements of order 2 and 3 in S;. Show that S; has no
element of order 4.

Corollary 2.5.24. For n > 2, every element of S,, can be written as a finite product of transpositions.

Proof. In view of above Lemma 2.5.18 it suffices to show that every cycle of 5, is a product
of transpositions. Clearly the identity element e € S,, can be written as e = (1 2)(1 2). If
o= (k1 ko -+ ky)isanr-cycle, r > 2,in S, then we can rewrite it as

O’Z(kl kg kr):(k‘l k‘r)(lﬁ krfl)-'-(kl kz)

Hence the result follows. O

Note that decompositions of o € S, into a finite product of transpositions is not unique.
For example, when n > 3 we havee = (1 2)(1 2) = (1 3)(1 3). However, we shall see shortly
that the number of transpositions appearing in such a product expression for o € S, is either
odd or even, but cannot be both in two such decompositions.

Lemma 2.5.25. Fix an integer n > 2, and consider the action of a permutation ¢ € S,, on the formal
product x :== [[ (x; — x;) given by

1<i<j<n

o) = [ @ow)— o)

1<i<j<n
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If o € S, is a 2-cycle (transposition), then o(x) = —x.

Proof. Since o € S, is a 2-cycle, there exists a unique subset {p,q} C J,, with p < ¢ such that
o= (p q). Theno(k) =k, Vk € J,\{p, q}. Consider the factor (z;—xz;) of xy with1 <i < j <n.
We have the following situations:
(@) If {i,j} = {p,q}, then o(z; — ;) = o0y — To(j) = — (i — ).
(b) If {i,j} N {p,q} = 0, then o(z; — ;) = o) — To(j) = (Ti — T5).
(c) If {i,5} N {p, ¢} is singleton set, then we have the following subcases.
L Ift <p < g theno((z:—p) (Tt —2¢)) = (To(t) = To(p)) (To(t) = To(q)) = (Tt—3¢) (Tt —p).
IL Ifp <t < g theno((zp—2¢) (2 —24)) = (Top) —Tow) ) (To@t) —To(q) = (Tq—2¢)(Tp—4).
I Ifp < g < t, theno((zp—2¢) (24 —21)) = (Top) —Tow)) (To(q)—To)) = (Tq—2¢)(2p—4).

Therefore, in the above three subcases the product (z; — z,)(z; — 4) remains fixed under
the action of o.

From these it immediately follows that o(x) = —x, for all 2-cycle o € S,,. O

Corollary 2.5.26. Fix an integer n > 2, andletoc € S,,. If 0 = 01 --- 0, = 11 - - - T5, Where o;, T; are
all transpositions in S,,, then both r and s are either even or odd.

Proof. Consider the formal product x := [[ (z; — ;). Theno(x) = (c10---00,)(x) =
1<i<j<n

(—1)"xand o(x) = (r1 0--- 0 T5)(x) = (—1)®x together implies that (—1)" = (—1)*, and hence

both r and s are either even or odd. O

Definition 2.5.27. A permutation o € S,, is called even (respectively, odd) if o can be written as
a product of even (respectively, odd) number of transpositions in S,.

Note that given a permutation o € S,,, if 0 = 01 0--- 0 0,, where 04,..., 0, are 2-cycles in
Sy, then by Corollary 2.5.26 we see that ¢ is even if and only if (—1)" = 1. Thus we have a
well-defined map sgn : S,, — {1, —1} given by sending o € S, to (—1)", where r is a number of
2-cycles appearing in the decomposition of ¢ into a product of 2-cycles in S,,. In other words,

-1, ifoisodd,
1, ifoiseven,

(2.5.28) sgn(o) = {

The number sgn(o) is called the signature of the permutation o € S,,.

Proposition 2.5.29. An r-cycle o € S,, is even if and only if r is odd.

Proof. Let 0 = (k1 ko --- k,) be an r-cycle in S,,. Then we can write it as a product ¢ =
(k1 ko -+ ky)= (k1 kr)(k1 kr—1)--- (k1 k2) of r — 1 number of transpositions in S,,. Hence
the result follows. O

Exercise 2.5.30. Express the following permutations as product of disjoint cycles, and then
express them as a product of transpositions. Determine if they are even or odd permutations.

. 12345678
(I)J_<23856471>658'

Answer: Note that,

c=(1238)0(456)
(1 8)o(1 3)o(12)o(46)o(45).

Since o is a product of 5 transpositions in Sg, we conclude that o is odd.
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.. 1 2 3 4 5 6
(i) T = (5 1 4 2 3 6) € Sg.
1 2 3 45 6 7
(iil)) 7 = (2 46 13 7 5) € Sq.

Exercise 2.5.31. If 0 € S5 has order 3, show that ¢ is a 3-cycle. More generally, if 0 € S, has
order p > 0, a prime number, such that n < 2p, show that ¢ is a p-cycle in S,,.

Proposition 2.5.32. Let A,, = {0 € S, : o iseven} be the set of all even permutations in S,. Then
A, is a subgroup of S,,, known as the alternating group on J,.

Proof. Since e = (1 2) o (1 2), we see that e € A,,. Thus 4, is a non-empty subset of S,,. Let
o,T € A, be arbitrary. Suppose that 7 = 7y 0 - - - 0 73,, Wwhere 71, .. ., 79, are transpositions in .S,,.
Since transpositions are elements of order 2 (see Proposition 2.5.14), they are self inverse in .S,,.
Now it follows from Exercise 2.1.8 (ii) that
-1 _
T = T2, O0---0T7.
Therefore, 7! is also an even permutation. Since o and 7! are even, their product c o 771 €
A,,. Therefore, A, is a subgroup of S,, by Lemma 2.2.8. O

Remark 2.5.33. Assume that n > 3. Note that, any transposition (¢ j) € S, with ¢ # 1 and
j # 1, can be written as

(@ 3) =@ d)o(l j)o(l i)
Again (1 i) o (1 j) = (1 j ). Since each element of A4, are product of even number of

transpositions, using above two observations, one can write each element of A,, as product of
3 cyclesin S,,.

Exercise 2.5.34. For all n > 3, show that A,, is generated by 3-cycles.

Solution: Note that any 3-cycle is an even permutation by Proposition 2.5.29, and hence is in
Ay. Therefore, the subgroup of S,, generated by all 3-cycles is a subgroup of A,,. For the
converse part, we show that any even permutation can be written as product of 3-cycles. Note
that any element of A, is a product of even number of 2-cycles in S,,. Let o = (i j) and
T = (k £) be two 2-cycles in S,,. If ¢ and 7 are not disjoint, then we may assume that j = k.
Thenoor = (i j)(j €)= (i j ¢)isa 3-cycle. If 0 and 7 are disjoint, then

cor=(i j)k 0
= 7)G k)G k)(E D
= (i j k) k),
where the last equality is due to the first case. Hence the result follows. O

Exercise 2.5.35. Show that |4,,| = n!/2.

Solution: Let {o1,...,0,} and {r, ..., 7} be the set of all even permutations and the set of all
odd permutations in S, respectively. Since r + s = nl, it suffices to show that » = s. Fix a
transposition © € S,,. Then 7oy, ..., w0, are all distinct (verify) odd permutations in S,,, and
hence r < s. Similarly s < r, and hence r = s, as required. O

Exercise 2.5.36. Determine the groups Az and Aj.

Exercise 2.5.37. Given 0,7 € S, show that [0, 7] :=coToo ' o77! € A,. The element [0, 7]
is called the commutator of o and 7 in S,,. Deduce that A4,, is generated by {[o, 7] : 0,7 € S, }, for
all n > 3.

Exercise 2.5.38. Show that S,, is generated by {(1 2),(1 2 --- n)},foralln > 3.
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Example 2.5.39 (Dihedral group D,,). Consider a regular n-gon in the plane R? whose vertices
arelabelled as 1,2, 3, ..., nin clockwise order. Let D,, be the set of all symmetries of this regular
n-gon given by the following operations and their finite compositions:

a := The rotations about its centre through the angles 27 /n, and
b := The reflections along the vertical straight line passing through the centre of the regular

n-gon.

Note that ord(a) = n, ord(b) = 2 and that a”~'b = ba. Therefore, the group generated by all
such symmetries of the regular n-gon can be expressed in terms of generators and relations as

D, := (a,b | ord(a) = n,ord(b) =2, and a" b = ba ).

This group is called the dihedral group of degree n. Note that D,, is a non-commutative finite
group of order 2n and its elements can be expressed as

D, ={e,a,a®,a® ...,a" "' b,ba,ba® ba®, ... ba" "'},

Note that each element of D,, is given by a bijection of the set J,, := {1,2,...,n} onto itself,
and hence is a permutation on .J,,. However, not all permutations of the set .J,, corresponds to
a symmetry of a regular n-gon as described above (see Exercise 2.5.40 below). We can define a
binary operation on D,, by composition of bijective maps. Then it is easy to check using Lemma
2.2.8 that D,, is a subgroup of S,,. The group D, is called the Dihedral group of degree n. It is a
finite group of order 2n which is non-commutative for n > 3.

Exercise 2.5.40. Show that D3 = S3, and D,, is a proper subgroup of S, for all n > 4.
Exercise 2.5.41. Let G be the subgroup of S, generated by the cycles

a:=(1234) and b:= (2 4)

in S4. Show that G is a dihedral group of degree 4.

2.6 Group homomorphism
A group homomorphism is a map from a group G into another group H that respects the
binary operations on them. Here is a formal definition.

Definition 2.6.1. Let G and H be two groups. A group homomorphism from (G, %) into (H, %) is
amap f: G — H satisfying f(a xb) = f(a)» f(b), forall a,b € G.

Example 2.6.2. (i) For any group G, the constant map c. : G — G, which sends all points
of G to the neutral element e € G, is a group homomorphism, called the trivial group
homomorphism of G.

(if) Let H be a subgroup of a group G. Then the set theoretic inclusion map H — G is a group
homomorphism. In particular, for any group G, the identity map

Idg:G— G, a—a
is a group homomorphism.
(iif) Fix an integer m, and define a function

Oom L —7Z, n—>mn,Vn€EZ.
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Then ¢, (n1 + n2) = m(ny + n2) = mny + mne = En(n1) + ©m(ne), for all ny,ny € Z.
Therefore, ¢, is a group homomorphism. Note that, ¢,, is always injective, and it is
surjective only for m € {1, —1}.

(iv) Let R* := R\ {0}, and consider the exponential map
f:R—R* z+——e" VreR.

Since f(a +b) = e? = e% . e’ = f(a) - f(b), for all a,b € R, the map f is a group
homomorphism from (R, +) into (R*, -). Verify that f is injective.

(v) Themap f: R — S := {z € C* : |2| = 1} defined by f(t) = >, V ¢ € R is a surjective
group homomorphism. Is it injective?

(vi) Let
1 a

¢ : R —s SLy(R), aH<0 |

), VaeR.

Verify that ¢ is an injective group homomorphism from the additive group R into the
multiplicative group SLy(R).

(vii) Fix an integer n > 2, and consider the map
V:7Z—Zpn, a— la], Va€Z.

Verify that 1 is a surjective group homomorphism.

(viii) Fix a prime number p > 0, and let F : Z,, — Z, be the map defined by F(a) = a?, for all
a € Zy. Since any multiple of p is 0 in Z,,, using binomial expansion we have

F(a+b) = (a+b)f = Zp: <P> PTIY = aP 4 bP.
=0
Therefore, F is a group homomorphism, known as the Frobenius endomorphism.
(ix) Fix aninteger n > 1, and let f : GL,,(R) — R* be the map defined by
f(A) =det(A), VA € GL,(R).
Verify that f is a group homomorphism.

(x) Let m,n > 1be integers such that n | m in Z. Verify that the map ¢ : Z,,, — Z,, defined by
sending [a] € Z,, to [a] € Z,, is a well-defined map that is a group homomorphism.

(xi) Let G be a group. For each a € G, the map ¢, : G — G defined by ¢, (b) = aba™!, Vb € G,
is a group homomorphism.

Exercise 2.6.3. For each integern > 1,let J,, := {k € Z:1 < k <n}. Foreach o € S,,, consider
the map 7 : J, 41 — Jp41 defined by

iy | o(k), if 1<k<n,
U(k)_{n+1, if k=n+1.

Note that, o is a bijective map, and hence is an element of S,,11. Show that the map
f:Sn_>Sn+1v o0,

is an injective group homomorphism. Thus, we can identify .S,, as a subgroup of S, 41.
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Lemma 2.6.4. Let n > 2 be an integer. Then the map sgn : S, — {1, —1} defined by sending o € S,
to
[ =1, ifoisodd,
sgn(o) = { 1, ifoiseven,
is a group homomorphism, called the signature homomorphism for S,,.
Proof. Let 0,7 € S, be arbitrary. Letoc = 0y 0--- 00, and 7 = 71 0 --- o 75, where o;,7; are

all 2-cycles in S,,. Theno o7 =0y 000,07 0--- 07, and hence sgn(oc o) = (—1)"** =
(=1)"(—1)® = sgn(o)sgn(7). O

Proposition 2.6.5. Let f : G — H be a group homomorphism. Let e € G and ey € H be the neutral
elements of G and H, respectively. Then we have the following.

(i) fleq) =en.
(ii) f(a™') = (f(a))"", foralla € G.
(iii) If ord(a) < oo, then ord(f(a)) | ord(a).
Proof. (i) Since f(ec)f(eq) = flec -ec) = f(ec) = f(eq) - en, applying cancellation law we
have f(eg) = ep. The second statement follows immediately.

(i) Since f is a group homomorphism, for any a € G, we have

and hence f(a™1) = (f(a)) ™"

(iii) Let n := ord(a) < oc. Since f(a)™ = f(a™) = f(eq) = en, it follows from Exercise 2.2.32
(i) that ord(f(a)) | n.

O

Exercise 2.6.6. Let G’ and H be two groups. Show that there is a unique constant group homo-
morphism from G to H.

Proposition 2.6.7. Let f : G — H be a group homomorphism.

(i) For any subgroup G’ of G, its image f(G') := {f(a) : a € G’} is a subgroup of H. Moreover, if
G’ is commutative, so is f(G').

(ii) For any subgroup H' of H, its inverse image f~*(H') := {a € G : f(a) € H'} is a subgroup of
G.

Proof. (i) Clearly, f(G') # 0ase € G'. For hy, ho € f(G'),wehave h; = f(a1) and hy = f(az),
for some ay,a2 € G’. Since alagl € G’, we have hlhgl = fla1)f(az)™t = f(alagl) €
f(G". If G’ is commutative, we have f(a)f(b) = f(ab) = f(ba) = f(b)f(a), for all a,b €
G'. Hence the result follows.

(i) Leteq € G and ey € H be the neutral elements of G and H, respectively. Since f(eq) =
e by Proposition 2.6.5 (i), we have e € f~!(H’). Since H’ is a subgroup of H, for any
a,b € f~1(H') we have f(ab=') = f(a)f(b)~! € H’, and hence ab~! € f~(H’). Thus
f~1(H') is a subgroup of G.

O

Proposition 2.6.8. Composition of group homomorphisms is a group homomorphism.
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Proof. Let f : G1 — Gz and g : Go — G3 be two group homomorphisms. Since (g o f)(ab) =

g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)) = (go f)(a)(go f)(b), for all a,b € G, the result
follows. [

Given any two groups G and H, we denote by Hom(G, H) the set of all group homomor-
phisms from G into H.

Exercise 2.6.9. Let G and H be two groups. Show that the projection maps ¢ : G x H = G
and 7y : G x H — H defined by

ma(a,b) =a and wg(a,b) =b, ¥V (a,b) € G x H,
are surjective group homomorphisms.
Proposition 2.6.10. Let G, H and K be groups. Then there is a natural bijective map from Hom (G, H x
K) onto Hom(G, H) x Hom(G, K).

Proof. Let g : H x K — H and 7k : H x K — K be the projection maps onto the first and
the second factors, respectively (see Exercise 2.6.9). Since both 7 and 7k are group homo-
morphisms, given any group homomorphism f : G — H x K, we have ny o f € Hom(G, H)
and 7 o f € Hom(G, K) by Proposition 2.9.20. Thus we get a map ® : Hom(G,H x K) —
Hom(G, H) x Hom(G, K) defined by

q)(f):(ﬂ'HOf,ﬂ'KOf), VfEHOHI(G,HXK>

To show that @ is surjective, given f € Hom(G, H) and g € Hom(G, K),leth : G -+ H x K be
the map defined by

h(a) = (f(a),g(a)), Va € G.

Since for given any a, b € G, we have

h(ab) = (f(ab), g(ab)) =

we see that h € Hom(G, H x K). Clearly ®(h) = (7 o h,mx o h) = (f,g). Therefore, ® is
surjective. To show that @ is injective, note that given any f € Hom(G, H x K), we have

fla) = ((mm o f)(a), (x © f)(a)), Va€G.

Therefore, if ®(f) = ®(g) for some f, g € Hom(G, H x K), then the conditions 7y o f =7y oyg
and 7 o f = mk o g together forces that f = g. This completes the proof. O

Definition 2.6.11. A group homomorphism f : G — H is said to be

(i) a monomorphism if f is injective,
(ii) an epimorphism if f is surjective, and
(iii) an isomorphism if f is bijective.
If f: G — H is an isomorphism, we say that G is isomorphic to H, and express itas G = H.

Lemma 2.6.12. Being isomorphic groups is an equivalence relation.

Proof. Given any group G, the identity map Idg : G — G given by Idg(a) = q, for all a €
G, is an isomorphism of groups. Therefore, being isomorphic is a reflexive relation. If f :
G — H is an isomorphism of groups, then its inverse map f~' : H — G is also a group
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homomorphism (verify!), and hence is an isomorphism because it is bijective. Therefore, being
isomorphic groups is a symmetric relation. If f : G — H and g : H — K be isomorphism
of groups. Then the composite map g o f : G — K is a group homomorphism, which is an
isomorphism of groups. Therefore, being isomorphic groups is a transitive relation. Hence the
result follows. O

Proposition 2.6.13. Given a group G, the set Aut(G) consisting of all group isomorphisms from G onto
itself is a group with respect to the binary operation given by composition of maps; the group Aut(G) is
known as the automorphism group of G.

Proof. Since composition of two bijective group homomorphisms is bijective and a group ho-
momorphism, we see that the map

GxG =G, (f,9)— foy,

is a binary operation on Aut(G). Clearly composition of maps is associative. The identity
map Idg : G — G plays the role of a neutral element in a group. Given f € Aut(G), its
inverse f~! : G — G is again a group homomorphism. Indeed, given a,b € G there exists
unique z,y € G such that f(z) = a and f(y) = b. Then we have f~!(ab) = f~1(f(z)f(y)) =
Y (f(zy)) = zy = f~1(a)f~'(y), and hence f~! € Aut(G). This proves that Aut(G) is a
group. O

Example 2.6.14. The complex conjugation map z — Z from the additive group C into itself is
an automorphism of C.

Exercise 2.6.15. Show that Aut(K,) is isomorphic to S3. (Hint: Note that Ky = {e,a,b,c},
where a? = b? = ¢? = eand ab = ba = ¢,bc = cb = a,ac = ca = b. If f € Aut(K,), then f(e) = e
and hence f| (abe} is a bijection of the subset {a,b,c} C K4 onto itself, producing an element
of S3. Thus we get a map ¢ : Aut(K4) — Ss. Verify that ¢ is a group isomorphism.)

Definition 2.6.16. The kernel of a group homomorphism f : G — H is the subset
Ker(f) :={a€ G : f(a) =en} CG.
Since f(eq) = ey by Proposition 2.6.5 (i), we have e € Ker(f). Therefore, Ker(f) is a non-

empty subset of G. Given any two elements a,b € Ker(f) we have f(ab™!) = f(a)f(b7}) =
f(@)f()™! = ey - e = en. Therefore, Ker(f) is a subgroup of G.

Example 2.6.17. (i) Fix an integer n and consider the homomorphism
fZ—Z,, a-a].
Then Ker(f) = {a € Z : n divides a} = nZ.
(ii) Let S' := {z € C: |z] = 1}. Consider the homomorphism
fiR— 8t VI

Then Ker(f) = {t e R: &>V~ 1t =1} = Z.
The following lemma shows that the kernel of a group homomorphism can be uniquely

determined purely using its universal property. Interesting fact to note is that this description
of kernel of a group homomorphism use only arrows and not any points.

Proposition 2.6.18 (Universal Property of Kernel). Let f : G — H be a group homomorphism.
Then there is a unique subgroup K of G satisfying the following properties.

(K1) f ok is trivial, where 1ic : K — G is the inclusion map, and
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(K2) given any group homomorphism ¢ : G' — G with f o ¢ trivial, there is a unique group homomor-
phism 1 : G' — K such that 1x o = ¢.

G/
(2.6.19) S &W
KL« G ! H

Proof. We first show the uniqueness of K. Let 1/ : K’ < G be any subgroup of G satisfying
(K1) and (K2). Since the homomorphism f o tg- is trivial, applying (K2) for K we have a
unique group homomorphism 7 : K/ — K such that tx+ = tx o 7. Similarly replacing (K, ¢x)
with (K', k), and (G', ¢) with (K, 1) in the above diagram (2.6.19), we get a unique group
homomorphism ' : K — K’ such that tx = tx/ o 7. Now replace (G’, ¢) with (K, ¢k ) in the
above diagram 2.6.19. Since both the group homomorphisms Idg : K — K andnon' : K — K
satisfies 1 o (n o 1) = vk and tx o Idx = tx, by uniqueness assumption in (K2), we have
non’ =Idg. Similarly, we have ' o n = Idk/. Therefore, both ' : K — K’ and n : K’ — K are
isomorphisms. Since both v : K < G and v+ : K’ — G are inclusion maps, and ¢ o1’ = tg/,
we must have 7’ is an inclusion map, and hence K C K’. Similarly, we have K’ C K, and
hence K = K.

To prove existence, take K = Ker(f) and tx : K — G the inclusion map. Clearly, f o vk is
trivial. For any group homomorphism ¢ : G’ — G with f o ¢ trivial, we have ¢(a) € K, for all
a € G'. Thus the image of ¢ lands inside K and hence we have a group homomorphism

V:G = K, aw ¢(a)
such that tx o 1) = ¢ as required. O

Proposition 2.6.20. A group homomorphism f : G — H is injective if and only if Ker(f) is trivial.

Proof. If Ker(f) # {e}, clearly f is not injective. Conversely, suppose that Ker(f) = {e}. If
f(a) = f(b), for some a,b € G with a # b, then ab™! # e and f(ab~!) = f(a)f(b™1) =
f(a)f(b)~! = ey, which contradicts our assumption that Ker(f) = {e}. This completes the
proof. O

Proposition 2.6.21. Any infinite cyclic group is isomorphic to Z.

Proof. Let G = (a) be an infinite cyclic group. Define a map f : Z — G by f(n) = a", for all
n € Z. Since
fn+m)=a"" =a"a" = f(n)f(m), Vm,n € Z,

the map f is a group homomorphism. Since G is infinite, we have a™ # e, Vn € Z \ {0}.
Therefore, Ker(f) = {e}, and so f is injective. Clearly f is surjective, and hence is an isomor-
phism. O

Proposition 2.6.22. Let G be a cyclic group generated by a € G. A homomorphism f : G — G is an
automorphism of G if and only if f(a) is a generator of G.

Proof. Let f : G — G be an automorphism of G. Let b = f(a). Let x € G be arbitrary. Since f
is surjective, there exists y € G such that f(y) = z. Since G = (a), we have y = a”, for some
n € Z. Thenz = f(y) = f(a™) = [f(a)]™ = b" € (b). This shows that G = (b), and hence b is a
generator of G. Conversely if f : G — G is a homomorphism such that f(a) generates G, then
f is surjective. If |G| is finite, we must have f is bijective. If G is not finite, then G has only two
generators, namely a and a~! by Proposition 2.3.15, and hence f must be either Idg or the map
given by sending b € G to b~'. In both cases, f is injective, and hence is in Aut(G). O

Theorem 2.6.23 (Cayley). Every group is a subgroup of a symmetric group.
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Proof. Let G be a group. Let S(G) be the symmetric group on G; its elements are all bijective
maps from G onto itself and the group operation is given by composition of bijective maps.
Define a map

p:G— S(G)

by sending an element a € G to the map
ve: G—= G, g—ag,

which is bijective (verify!), and hence is an element of S(G). Then given any g € G we have

and hence ¢ is a group homomorphism. Note that ¢, = Idg if and only if a = e in G (ver-
ify!). Therefore, ¢ is an injective group homomorphism, and hence we can identify G with the
subgroup ¢(G) of the symmetric group S(G). O

We end this section with the following two results which justify the terminologies intro-
duced in Definition 2.6.11 in the light of category theory.

Proposition 2.6.24. Let f : G — H be a group homomorphism. Then the following are equivalent.

(i) f is injective.

(ii) Given a group T and group homomorphisms ¢, : T — G with f o ¢ = f o1, we have ¢ = 1.
In other words, f is a monomorphism in the category of groups.

(iii) Given a group T and a group homomorphism ¢ : T — G with f o ¢ trivial, we have ¢ is trivial.

Proof. (i) = (ii) is Clear. To show (ii) = (iii), take ¢ : T — G to be the trivial group homomor-
phism. Then both f o ¢ and f o ¢ are trivial, and hence ¢ is trivial by (ii). To show (iii) = (i),
take T' = Ker(f) and ¢ : T — G the inclusion map of Ker(f) into G. Then f o ¢ is trivial, and

hence the inclusion map ¢ : Ker(f) < G is a trivial group homomorphism by (iii). This forces
Ker(f) = {e}, and hence f is injective. O

Proposition 2.6.25. Let f : G — H be a group homomorphism. Then the following are equivalent.

(i) f is surjective.

(ii) Given a group T and group homomorphisms ¢, : H — T with ¢ o f = 1) o f, we have ¢ = 1.
In other words, f is an epimorphism in the category of groups.

(iii) Given a group T and a group homomorphism ¢ : H — T with ¢ o f trivial, we have ¢ is trivial.
Proof. (i) = (ii): Let ¢,¢ : H — T be group homomorphisms with ¢ o f = 1 o f. Since f is

surjective, given h € H there exists g € G such that f(g) = h. Then (¢o f)(g) = (¢ o f)(g) gives
¢(h) =(h). Since h € H is arbitrary, we have ¢ = .

(ii) = (iii): Take v : H — T to be the trivial group homomorphism.

(iii) = (i): We use the notion of coset of a subgroup. See Proposition 2.7.19 for a proof. O
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2.7 Notion of Quotient & Cosets

Let G be a group, and H a subgroup of G. In this section we introduce the notion of a
quotient group of G by H and prove its uniqueness. In the process of construction of quotient,
we identify a class of subsets of G, known as cosets of H in G, and discuss their basic properties
with some applications. An explicit construction of quotient group will appear in the next
section.

Definition 2.7.1 (Quotient Group). Let H be a subgroup of a group G. The quotient of G by H
is a pair (@, 7), where @ is a group and 7 : G — @ is a surjective group homomorphism such
that

(QG1) w(h) = eq, the neutral element of @, for all h € H, and

(QG2) Universal property of quotient: given a group 1" and a group homomorphism ¢ : G — T
satisfying H C Ker(t), there exists a unique group homomorphism ¢ : @ — 7 such that
tom = t; i.e., the following diagram commutes.

G
_ 7
2.7.2) ﬂl e
Q

Interesting point is that, without knowing existence of such a pair (@, ¢), it follows imme-
diately from the properties (QG1) and (QG2) that such a pair (Q, g), if it exists, must be unique
up to a unique isomorphism of groups in the following sense.

Proposition 2.7.3 (Uniqueness of Quotient). With the above notations, if (Q, ) and (Q’, n") are two
quotients of G by H, then there exists a unique group isomorphism ¢ : Q — Q' such that pom = 7',

Proof. Taking (T',t) = (Q’, ") by universal property of quotient (@, m) we have a unique group
homomorphism 7 :Q — Q suchthat/ om = 7. Similarly, taking (7', t) = (Q, 7) by universal
property of quotient (Q', ') we have a unique group homomorphism 7 : Q' — @ such that
7 on’ = . Since both 7 o 7/ and Idg are group homomorphisms from () into itself making the
following diagram commutative,

T
QQ/%,Q
Idg

it follows that 7 o 7/ = Idg. Similarly o = Idg:. Therefore, 7 Q — Q' is the unique group
isomorphisms such that 7/ o m = 7’. This completes the proof. O

Now question is about existence of quotient. We shall see shortly that we need to impose
an additional hypothesis on H (namely H should be a normal subgroup of G) for existence of
quotient. The condition (QG1) says that 7(H) = {eg}. Since 7 : G — Q is a group homomor-
phism by assumption, given any two elements a,b € G with a™'b € H we have w(a™'b) = g,
and hence 7(a) = 7(b). In other words, two elements a,b € G are in the same fiber of the map
7: G — Qif a”'b € H. Since the set of all fibers of any set map f : G — Q gives a partition of
G, and hence an equivalence relation on G, the condition (QG1) suggests us to define a relation
pr on G by setting

(a,b) € pr, if a 'be H,
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It is easy to check that p;, is an equivalence relation on G (verify!). The pr-equivalence class of
an element a € G is the subset

lal,, ={beG:a'be H} ={ah:h € H},

which we denote by aH; the subset aH is called the left coset of H in G represented by a. Note
that (verify!), given a,b € G,

(i) either aH NbH = Y or aH = bH,
(ii) aH = bH if and only if a='b € H, and

(i) G = | aH.

a€G
Proposition 2.7.4. For each a € G, the map ¢, : H — aH defined by ©,(h) = ah, forall h € H, is
bijective. Consequently, |aH| = |bH]|, forall a,b € H.

Proof. Since every element of aH is of the form ah, for some h € H, we see that ¢,(h) = ah,
and hence ¢, is surjective. Since ah = ah’ implies that h = (a"'a)h = a=*(ah) = a " (al’) =
(a"ta)h' = KW, we see that ¢, is injective. Therefore, ¢, is bijective. Thus, both H and aH have
the same cardinality. O

Let G/H = {aH : a € G} be the set of all distinct left cosets of H in G.

Theorem 2.7.5 (Lagrange’s Theorem). Let G be a finite group, and H a subgroup of G. Then |H|
divides |G/|.

Proof. Since py, is an equivalence relation on G, it follows from Proposition 2.1.31 that G is a
disjoint union of distinct left cosets of H in G. Since G is finite, there can be at most finitely
many distinct left cosets of H in G. Since |[aH| = |bH|, for all a,b € G (see Proposition 2.7.4), it
follows that

G| = |G/H]| - |H],

where |G/ H]| is the cardinality of the set G/H, i.e., the number of distinct left cosets of H in G.
This completes the proof. O

Exercise 2.7.6. Let G be a finite group of order mn having subgroups H and K of orders m and
n, respectively. If gcd(m, n) = 1 show that HK := {hk € G: h € H, k € K} is a group.

Corollary 2.7.7. Let G be a finite group of order n. Then for any a € G, ord(a) divides n. In particular,
a*=e, Yac€dQG.

Proof. Let H be the cyclic subgroup of G generated by a. Since G is a finite group, so is H. Then
by Lagrange’s theorem 2.7.5, | H| divides |G| = n. Since |H| = ord(a), the result follows. To see
the second part, note that if ord(a) = k, then n = km, for some m € N, and so a" = (a*)™ =
e™ =e. 0

Exercise 2.7.8. Let G be a finite group of order n. Let k£ € N be such that ged(n, k) = 1. Show
that the map f : G — G defined by f(a) = a*, V a € G, is injective, and hence is bijective.

Corollary 2.7.9. Any group of prime order is cyclic.

Proof. Let G be a finite group of order p, where p is a prime number. If p = 2, then clearly G
is cyclic. Suppose that p > 2. Then there is an element a € G such that a # e. Since the cyclic
subgroup € H, := (a) = {a" : n € Z} contains both a and ¢, we have |H,| > 2. Since |H,|
divides |G| = p by Lagrange’s theorem, we must have |H,| = p, because p is prime. Then we
must have G = H,, and hence G is cyclic. O
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Corollary 2.7.10 (Euler’s Theorem). Let n > 2 be an integer. Then for any positive integer a with
ged(a,n) = 1, we have a®™ = 1 (mod n), where ¢(n) is the number of elements in the set {k € N :
1<k<nand ged(k,n)=1}.

Proof. Note that, U,, := {[a] € Z,, : gcd(a,n) = 1} is a finite subset of Z,, containing ¢(n)
elements. Since U, is a group with respect to the multiplication operation modulo n, for any
[a] € U, we have [a]?(™) = [1]. In other words, a®(™) = 1 (mod n). O

Corollary 2.7.11 (Fermat’s little theorem). If p > 0 is a prime number, then for any positive integer
a with ged(a,p) = 1, we have a?~* = 1 (mod p).

Proof. Since ¢(p) = |U,| = p — 1, the result follows from the Corollary 2.7.10. O
Exercise 2.7.12. Show that 20090 — 1 is divisible by 7.
Solution. Since ged(2,7) = 1, by Fermat’s little theorem we have 27~! = 1 (mod 7). So [2°] = [1]

in Z7. Then [26]1000 = [1]1000 — [11000] = [1] in Z;. Therefore, 26°°° = 1 (mod 7), and hence
26000 _ 1 js divisible by 7. O

Exercise 2.7.13. Show that 15199 — 1 and 105'2%° — 1 are divisible by 8.

Exercise 2.7.14. Define a relation pr on G by setting

(a,b) € pg if ab™' € H.

(i) Show that pp is an equivalence relation on G.
(if) Show that the pr-equivalence class of a € G in G is the subset of G defined by
[alpr ={bEG:a"'be H} ={ha:he H} = Ha.
The subset Ha C G is called the right coset of H in G represented by a.
(iii) Show that if G is abelian then aH = Ha, for all a € G.

(iv) Give an example of a group G, two subgroups H and K of G, and an element b € G such
that that bK # Kb, while aH = Ha holds, for all a € G. (Hint: Take G = S3, and

H:={e,(123),(132)}CS;and K :={e,(2 3)} CSs.

Note that both H and K are subgroups of Ss. Verify that aH = Ha, V a € S3, while for
b= (1 3 2) € S;gwehave bK # Kb.)

(v) Show that H and Ha have the same cardinality, foralla € G.

The set of all distinct right cosets of H in G is denoted by
H\G ={Ha:ac<€ G}.

Lemma 2.7.15. Let H be a subgroup of a group G. Then there is a one-to-one correspondence between
the set of all left cosets of H in G and the set of all right cosets of H in G. In other words, there is a
bijective map ¢ : G/H — H\G. Therefore, both the sets G/H and H\G have the same cardinality.

Proof. Define amap ¢ : {aH : a € G} — {Hb: b € G} by sending p(aH) = Ha™!, for all
a € G. Note that, aH = bH if and only if a='b € H if and only if o' (b=!)~! € H if and only if
Ha~' = Hb~'. Therefore, ¢ is well-defined and injective. To show ¢ bijective, note that given
any Hb € {Hb: b € G} we have (b~ H) = Hb. Thus, ¢ is surjective, and hence is a bijective
map. O
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Definition 2.7.16. Let H be a subgroup of a group G. We define the index of H in GG, denoted as
[G : HJ, to be the cardinality |G/H| = |H\G|. In case, this is a finite number, the index [G : H]
is the number of distinct left (and right) cosets of H in G.

Exercise 2.7.17. Let H and K be two subgroups of G of finite indices. Show that H N K is a
subgroup of G of finite index.

Example 2.7.18. The index of nZ in Z is n. Indeed, given any two elements a,b € Z, we have
a —b € nZif and only if @ = b (mod n). Therefore, the left coset of nZ represented by a € Z is
precisely the equivalence class

[a] ={b€Z:a=b(modn)} =a-+nZ.
Since there are exactly n such distinct equivalence classes by division algorithm, namely
a+nZ, where 0 <a<n-—1;

(c.f. Example 2.1.32), we conclude that the index of nZ in Z is [Z : nZ] = n. We shall explain it
later using group homomorphism and quotient group.

Proposition 2.7.19 (Epimorphism of groups is surjective). Let f : G — H be a group homomor-
phism satisfying the following property:
* Given a group T and a group homomorphism ¢ : H — T with ¢ o f trivial, we have ¢ is trivial.

Then f is surjective.

Proof. Note that A := f(G) is a subgroup of H, and so we can consider the set
A\H ={Ah:he H}

consisting of all distinct right cosets of Ain H. Let A’ be a subset of H which is not a right coset
of Ain H,and let S = {A'} U H/A. Let T' = Aut(S) be the symmetric group on S; its elements
are bijective maps from S onto itself and the group operation is given by composition of maps.
Note that, given h € H, consider the map

on : AN\H — A\H

that sends Ak’ € A\H to A(h'h) € A\H. Since (W'h)(h"h)~' = Whh='h"~' = Wh""', it
follows that ¢y, is well-defined and injective. Since ¢}, -1 0 ¢, = Ida\ g = ©n © @51, the map ¢y,
is bijective.

Let ¢ : H — T := Aut(S) be the map given by sending h € H to the permutation ¢(h) €
Aut(S) which is defined by

p(W)(A) = A and @(h)[ , , = 1.

It is easy to verify that ¢ is a group homomorphism. Let o € T = Aut(S) be the permutation
that interchanges A and A’, and keeps everything else fixed; i.e., o is the 2-cycle 0 = (A A’).
Then the map

(2.7.20) Y:H—=T, hs o tp(h)o,

is a group homomorphism (verify!).

If a € A, then p(a)(A) = Aa = A and ¢(a)(A") = A’. Then p(a) € T is disjoint from the
2-cycle 0 = (A A’), and hence they commute to give 1(a) = o ¢(a)o = ¢(a). Therefore,
<p|A = Q/J’A and hence p o f = ¢ o f. Since f is an epimorphism, we have ¢ = 1. Then
o(h) = o7 tp(h)o, forall h € H. Since 0 = (A A’) and p(h)(A4’) = A/, we have ¢(h)(A) =
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(07 p(h)o)(A) = o7 1p(h)(A) = 071(A4’) = A. Since p(h)(A) = Ah by definition, we have
Ah = A, and hence h € A. Since h € H is arbitrary, we have A = H, as required. O

Exercise 2.7.21. (i) Does there exists a group isomorphism from (Q, +) onto (Q*, )?
(ii) Does there exists a surjective group homomorphism from (Q, +) onto (Q*, -)?

(iii) Does there exists a non-trivial group homomorphism from Q into Z?

2.8 Normal Subgroup & Quotient Group

In this section we introduce the notion of normal subgroup and give a construction of quo-
tient of a group by its normal subgroup. Recall that the condition (QG1) in Definition 2.7.1 of
quotient group suggests us to consider the set

G/H :={gH : g € G}

consisting of all left cosets of H in G as a possible candidate for the set (). Now question is what
should be the appropriate group structure on it? Take any group homomorphism f : G — T
such that H C Ker(f). Then we have f(a) = f(b) if a='b € H. The commutativity of the

diagram (2.7.2) tells us to send aH € Q to f(a) € T to define the map f: Q — T which needs
to be a group homomorphism. Then we should have

(2.8.1) f((aH)(bH)) = f(ab) = f((ab)H), Y a,b € G.
This suggests us to define a binary operation on the set G/H = {gH : g € G} by
(2.8.2) (aH)(bH) := (ab)H, Y a,b € G.

Proposition 2.8.3. The map G/H x G/H — G/H defined by sending (aH,bH) to (ab)H is well-
defined if and only if

(2.8.4) g 'hge H Yge Gandh € H.

Proof. Suppose the the above map is well-defined. Let h € H and g € G be arbitrary. Then
hH = H,and hence (hH) - (¢H) = H - (9H). Since the above defined binary operation on G/H
is well-defined, we have (hg)H = gH and hence g~ 'hg € H.

Conversely, suppose that g~'hg € H, forall g € Gand h € H. Let a1H = azH and
b1H = by H, for some a1, as,b1,bs € G. Then h := al_lag € H and bl_lbg € H. Then
(albl)_l(azbg) = b;laflagbg
= by 'hby, since h = aj 'as.
= (b "hby)(bythe) € H,

since H is a group and both bl_lhbl and bl_lbg are in H. Therefore, (a1b1)H = (a2b2)H, as
required. O

Proposition 2.8.3 suggests us to reserve a terminology for those subgroups H of G that
satisfies the property (2.8.4).

Definition 2.8.5 (Normal Subgroup). A subgroup H of a group G is said to be normal in G if
g 'hg € H,V g € G, h € H. In this case we express it symbolically by H < G.
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Exercise 2.8.6. Let G be a group and H a subgroup of G. Given a € G, let
Ha:={ha:he H} CG.

Show that the following are equivalent.

(i) aH = Ha, foralla € G.
(i) e 'Ha = H, foralla € G.
(iii) a'Ha C H,foralla € G.
(iv) a=tha € H,foralla € Gand h € H.

Proposition 2.8.7. Any subgroup of index 2 is normal.
Proof. Let H be a subgroup of G such that [G : H] = 2. Then H has only two left (resp., right)
cosets, namely H and aH (resp., H and Ha), wherea € G\ H. Since G = HUaH = HU Ha,

for any @ € G\ H, we see that «H = Ha, for all ¢ € G, and hence aHa™ ' = H,forall a € G.
This completes the proof. O

Corollary 2.8.8. Foralln > 3, A, is a normal subgroup of S,,.
Exercise 2.8.9. (i) Show that any subgroups of an abelian group G is normal in G.

(i) Let H = ((1 2 3)) be the cyclic subgroup of S5 generated by the 3-cycle (1 2 3) € Ss.
Show that H is a normal subgroup of S.

(iii) Verify if the subgroup K := ((1 2)) of S5 is normal or not.
(iv) Determine all normal subgroups of Ss.
(v) Show that SL,,(R) is a normal subgroup of GL,,(R), for all n € N.

Exercise 2.8.10. Show that S; has no normal subgroup of order 3. (Hint: If o € S4 has order
3, then o is a 3-cycle in Sy. Since there are 4 = 8 distinct 3-cycles in S (see Exercise 2.5.15),
and all of them are conjugates (see Proposition 2.5.12), a normal subgroup H of S4 containing
a 3-cycle contains at least 8 elements.)

Exercise 2.8.11. Let H be a subgroup of G. Let p = {(a,b) € G x G:a"'b € H} C G x G. Note
that p is an equivalence relation on G. Show that H is a normal subgroup of G if and only if p
is a subgroup of the direct product group G x G (see Exercise 2.1.34).

Lemma 2.8.12. The kernel of a group homomorphism f : G — H is a normal subgroup of G.

Proof. For any a € G and b € Ker(f), we have f(aba™') = f(a)f(b)f(a™') = f(a)en f(a)™' =
e, and hence aba™! € Ker(f). Therefore, Ker(f) is a normal subgroup of G. O

Exercise 2.8.13. For n > 2, show that A,, is a normal subgroup of S,, by constructing a group
homomorphism ¢ : S, = p2 = {1, —1} such that Ker(p) = A,,.

Exercise 2.8.14. For n > 1, show that SL,,(R) is a normal subgroup of GL,,(R) by constructing
a group homomorphism ¢ : GL,, (R) — R* such that Ker(y) = SL,,(R).

Lemma 2.8.15. Let f : G — H be a group homomorphism. If K is a normal subgroup of H, then
1K) is a normal subgroup of G.

Proof. Suppose that K is a normal subgroup of H. Then for any a € G and b € f~!(K), we
have f(aba=') = f(a)f(b)f(a)~! € K, and hence aba~! € f~1(K). O
Exercise 2.8.16. Show that N := {A € GL,,(C) : | det(A)| = 1} is a normal subgroup of GL,, (C).
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Remark 2.8.17. Normal subgroup of a normal subgroup need not be normal. To elaborate it,
there exists a group G together with a normal subgroup H of G such that H has a normal
subgroup K which is not a normal subgroup of G. Can you give such an example?

Theorem 2.8.18 (Existence of Quotient Group). Let H be a normal subgroup of a group G. Then
the quotient group (Q, ) of G by H exists and is unique in the sense that if (Q, m) and (Q', ") are two
quotients of G by H, then there exists a unique isomorphism of groups ¢ : Q — Q' such that pon’ = .
We denote Q by G/H.

Proof. Since H is a normal subgroup of G,
(aH)(bH) := (ab)H, Y a,b € G,

is a well-defined binary operation on the set G/H := {aH : a € G}, see Proposition 2.8.3.
Given any a, b, c € G, we have

(aH -bH) - cH = (ab)H - ¢cH = ((ab)c)H = (a(bc))H = aH - (b¢)H = aH - (bH - cH).
Therefore, the binary operation on G/ H is associative. Given any aH € G/H, we have

aH -eH = (ae)H = aH
and eH -aH = (ea)H = aH.

Therefore, eH = H € G/H is neutral element for the binary operation on G/H. Given any
aH € G/H, note that

aH-a'H = (aa ") H = eH
and a 'H aH = (a 'a)H = eH.

Therefore, G/H is a group. Set ) := G/H and consider the map
(2.8.19) 7w : G — Q defined by 7(a) =aH, Va € G.

Clearly 7 is surjective and given a,b € G we have n(ab) = (ab)H = (aH)(bH) = w(a)m (D).
Therefore, 7 is a group homomorphism. Since for any h € H, we have n(h) = hH = eH = H,
the neutral element of the group G/H, we see that H C Ker(w). Let T be any group and
t : G — T be a group homomorphism satisfying t(h) = er, the neutral element of T', for all
t € T. Since aH = bH if and only if a~'b € H, applying 7 on a™'b we see that w(a) = 7(b).
Therefore, the map

(2.8.20) t:G/H =T, aH — t(a),

is well-defined. Since

t((aH)(bH)) = t((ab)H) = f(ab) = f(a)f(b) = t(aH)t(bH),

we conclude that £ is a group homomorphism. Since (t o 7)(a) = t(aH) = f(a), Y a € G, we
haveton = f. If ¢ : G/H — T is any group homomorphism satisfying ¢ o 7 = , then for any
a € G wehave t(aH) = (ton)(a) = t(a) = (€ o)(a) = £(aH), and hence t = ¢. Therefore,
the pair (G/H, ) satisfy the properties (QG1) and (QG2), and hence is a quotient of G by H.
Uniqueness is already shown in Proposition 2.7.3. O

Corollary 2.8.21. Let H be a normal subgroup of a group G, and let (G/H, ) be the associated quotient
of Gby H. Then Ker(n) = H.
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Proof. Since the group operation on the quotient group G/H := {aH : a € G} is given by
(aH)(bH) := (ab)H, VY aH,bH € G/H, we have
Ker(m) ={a € G :7(a) = H}

={aeG:aH = H}

={a€eG:a€ H} =H.
This completes the proof. O
Exercise 2.8.22. Let G be a group such that G/Z(G) is cyclic. Show that G is abelian.
Solution: Let Z := Z(G). Suppose that G/Z is cyclic. Then G/Z = (aZ ), for some a € G. Let
z € G be arbitrary. Then zZ = (aZ)" = a"Z, for some n € Z. Then a "z = (a™) 'z € Z.
Therefore, a= "z = z, for some z € Z, and so ¢ = a"z, for some z € Z = Z(G). Lety € G be

given. Then as before, y = a"™w, for some m € Z and w € Z(G). Since z,w € Z(G), we have
ry = a"za™w = a™wa"z = yx, as required. O

Corollary 2.8.23. There is no group G such that |G /Z(Q)| is a prime number.

2.9 Isomorphism Theorems

Let G be a group. Given a normal subgroup K of G, let (G/K, 7) be the associated quotient
group of G by K, where
7:G—= G/K ={aK :a € G}

is the natural quotient homomorphism given by
m(a) =aK, Va€QG.

Theorem 2.9.1. Let f : G — H be a group homomorphism. Let K be a normal subgroup of G such

that K C Ker(f). Then there is a unique group homomorphism f: G/K — H such that fomr=f,
where 7 : G — G/ K is the quotient homomorphism.

G ! "
| 7
G/K

Furthermore, f is injective if and only if K = Ker(f).

Proof. Since K is a normal subgroup of G, the quotient group G/K exists with the natural
surjective group homomorphism 7 : ¢ — G/K defined by n(a) = aK, Va € G. Since
K C Ker(f), by universal property of quotient (see Definition 2.7.1) we have a unique group
homomorphism f G/K — H such that f om = f. The fact that f is a well-defined group
homomorphism can also be directly checked by observing that

J(aK) = (fo)(a) = f(a), Va € G.

Since Ker(f) = {gK : f(9) = ex} = {gK : g € Ker(f)}, we see that Ker(f) is trivial
(meaning that, it is a trivial subgroup) if and only if & = K, V g € Ker(f). This is equivalent
to say that, g € K, V g € Ker(f), i.e., Ker(f) C K. Since K C Ker(f) by assumption, it follows

from Proposition 2.6.20 that fis injective if and only if K = Ker(f). O
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Slogan: To get a group homomorphism from a quotient group G/H to a group G’, thanks to
Theorem 2.9.1 we just need to define a group homomorphism f : G — G’ such that H C
Ker(f).

Example 2.9.2. Let H; and H; be a normal subgroups of G and Gs, respectively. Note that
H, x H, is anormal subgroup of G1 x Gy (verify!). Let m; : G1 — G1/Hy and 7y : G2 — G2/ H»

be the natural quotient group homomorphisms. These give rise to a group homomorphism
(i) : G1 X G2 — (Gl/Hl) X (GQ/HQ) givenby

gb(al,ag) = (7‘(’1(&1),71’2(&2)) = (alHl,CLQHQ), V (0,1,0,2) S Gl X GQ.

Note that ¢ is surjective because both 7; and 75 are so. Moreover, Ker(¢) = Hy x Hy (verify!).
Then by Theorem 2.9.1, given any normal subgroup K of G x G2 with K < Hy x Hy, thereis a

unique group homomorphism ¢ : (G1 x G2)/K — (G1/H1) x (G2/H>) such that pomk =0,
where 1k : G1 X G2 = (G1 x G2)/K is the natural quotient group homomorphism.

As an immediate corollary, we have the following.

Corollary 2.9.3 (First Isomorphism Theorem). Let f : G — H be a surjective homomorphism of
groups. Then f induces a natural isomorphism of groups f : G /Ker(f) — H.

Proof. Note that Ker(f) is a normal subgroup of G. It follows from Theorem 2.9.1 that the
group homomorphism f : G/Ker(f) — H induced by f is injective. Since f is surjective and
fom=f wherer: G — G/Ker(f) is the natural surjective homomorphism, it follows that f
is surjective. Therefore, fisa bijective group homomorphism, and hence is an isomorphism of
groups. O

Let G be a group. Note that given a normal subgroup N of G, the quotient group G/N
of G by N comes with a natural surjective group homomorphism 7y : G — G/N such that
Ker(mn) = N (see Definition 2.7.1 and Corollary 2.8.21). On the other hand, given a group @
and a surjective group homomorphism 7 : G — @, its kernel Ker(7) is a normal subgroup of
G such that G/Ker () = @ by the First isomorphism theorem (Corollary 2.9.3) for groups. This
motivates us to define the following (c.f. Definition 2.7.1).

Definition 2.9.4. A quotient group of G is a pair (Q, ), where Q isa groupand 7 : G — Q isa
surjective group homomorphism.
As an immediate consequence, we have the following.

Corollary 2.9.5. Given a group G, there is a one-to-one correspondence between the following two sets:

(i) N := the set of all normal subgroups of G, and

(ii) Q¢ := the set of all quotient groups of G.
Proof. Define a map ® : Ng — Qg by sending a normal subgroup N of G to the associ-
ated quotient group (G/N,nn) € Qg. Since my is a surjective group homomorphism with
Ker(my) = N, the map ® admits an inverse, namely ¥ : Qs — N given by sending a quotient
group (@, ) of G to the kernel N := Ker(7) € Ng. Since the pairs (G/N,7n) and (Q, ) are

uniquely isomorphic, we conclude that ® and ¥ are inverse to each other. This completes the
proof. O

Proposition 2.9.6. The group 7Z,, is isomorphic to Z/n’Z.
Proof. Let f : Z — Z,, be the map defined by

flk) = k], VEk € Z.
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Since
J(ky+ ko) = [k1 + ko] = [k1] + [ko] = f(k1) + f(k2), V k1, k2 € Z,

we see that f is a group homomorphism. Clearly f is surjective (verify!). Note that Ker(f) =
{k € Z : [k] = [0]} = nZ. Then by first isomorphism theorem we have Z/nZ = 7Z,,. O

Proposition 2.9.7. Any finite cyclic group of order n is isomorphic to Z,,.

Proof. Let G be a finite cyclic group of order n. Then there exists a € G such that (a) = {a" :
k € Z} = G. Define amap f : Z — G by

f(k)=d" VEkeZ.

Since
fky + ko) = a®1tk2 = gFighe = f(k)) f(ky), Vi, ke € Z,

f is a group homomorphism. Clearly f is surjective because every element of G is of the form
a*, for some k € Z. Then by first isomorphism theorem G is isomorphic to Z/Ker(f). Note
that, Ker(f) = {k € Z : a* = ¢}. Since G is a cyclic group of order n generated by a, we have
ord(a) = n (see Corollary 2.3.11). Then we have Ker(f) = {k € Z : a* = e} = nZ. Therefore,
G = Z/nZ. Since Z/nZ = Z,, by Theorem 2.9.6, we have G = Z,,. O

Exercise 2.9.8. Show that any group of order 4 is isomorphic to either Z4 or K.
Exercise 2.9.9. Show that any group of order 6 is isomorphic to either Zg or Ss.

Exercise 2.9.10. Use the signature homomorphism S,, — p2 = {1, —1} to show that A,, is the
only index 2 subgroup of S,,.

Exercise 2.9.11. Show that SLy(Zs3) and Sy are two non-isomorphic non-commutative groups
of order 24.

2.9.1 Inner Automorphisms

Let G be a group. Given a € G, the map ¢, : G — G defined by
0a(b) =aba™', Vb€ G,
is a group homomorphism. Indeed,
0a(bc) = a(bc)a™t = (aba™ ) (aca™) = ¢q(b)pa(c), ¥ b,c € G.

Since Ker(p,) = {b € G : aba™" = e} = {e}, ¢, is injective. Given ¢ € G, note that p,(a"*ca) =

a(a=teca)a™! = ¢, and so ¢, is surjective. Therefore, , is an isomorphism.

Definition 2.9.12. An automorphism ¢ € Aut(G) is said to be an inner automorphism of G if
there exists a € G such that p(b) = aba™!, forall b € G.

Proposition 2.9.13. Let G be a group. Let Inn(G) be the set of all inner autormorphisms of G. Then
Inn(G) is a subgroup of Aut(G).

Proof. Note that the identity map Idg : G — G is in Inn(G). Given f,g € Inn(G), there exists
a,b € G such that f and g(z) = bab~!, forallz € G. Then f~! = ¢,-1,and that (o, 1 0 ) (z) =
a"tbzb™la = (a7 'b)x(a™tb)™t = pu-1,(2), for all z € G. Therefore, Inn(G) is a subgroup of
Aut(G). O

Proposition 2.9.14. The map ¢ : G — Inn(G) that sends a € G to the map ¢, : G — G defined by

¢(a)(b) = aba™ ', Vb € G,
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is a surjective group homomorphism with kernel Z(G). Consequently, G/Z(G) = Inn(G).

Proof. Leta,b € G be given. Then forany z € G we have p(ab)(x) = (ab)x(ab) ™! = a(bxb™1)a~! =
a(pp(z))a™t = (4 o @p)(z), and hence p(ab) = p(a) o p(b). Therefore, ¢ is a group homomor-
phism. Since every element of Inn(G) is of the form ¢,, for some a € G, the map ¢ is surjective.
Since Ker(¢) = {a € G : p(a) =ldg} = {a € G : aba™ = b, Vb € G} = Z(G), by the first
isomorphism theorem for groups we have G/Z(G) = Inn(G). O

Exercise 2.9.15. Let G be a group such that G/Z(G) is cyclic. Show that Inn(G) is a trivial
subgroup of Aut(G).

Theorem 2.9.16 (Second Isomorphism Theorem). Let G be a group. Let H and K be subgroups of
G with K normal in G. Then

(i) HK is a subgroup of G,
(ii) K is a normal subgroup of HK, and
(iii) H/(HNK)~ HK/K.

Proof. (i) Let h € H and k € K be arbitrary. Since K is a normal subgroup of G, we have
hk = (hkh™')h € KH and so HK C KH. Similarly, kh = h(h='kh) € HK shows that
KH C HK. Thus HK = KH and hence HK is a subgroup of G by Theorem 2.4.3.

(i) Clearly K is a subgroup of HK. Since K is normal in G, given any a € HK C G and
k € K we have aka™! € K, and hence K is a normal subgroup of HK.

(iii) Define a map ¢ : H — HK/K by ¢(a) = aK, for all a € H. Since ¢(ab) = (ab)K =
(aK)(bK) = p(a)p(b), for all a,b € H, ¢ is a group homomorphism. Since K € HK/K is the
neutral element, given any h € H and k € K we have (hk)K = (hK)(kK) = hK = ¢(h), and
so ¢ is surjective. Since

Ker(p)={he H:hK=K}={h€e H:he K} =HNK,
by first isomorphism theorem (see Corollary 2.9.3) we have H/(HNK) ¥ HK/K. O

Example 2.9.17. Let m,n € N with ged(m,n) = 1. Consider the subgroups H = mZ and
K = nZ of (Z,+). Since Z is abelian, K is a normal subgroup of Z. Since gcd(m,n) = 1, there
exists a,b € Z such that am +bn = 1, and so 1 € H + K. Since ged(m,n) = 1, we have
lem(m,n) = mn, and so H N K = mnZ. Then by the second isomorphism theorem we have
mZ/mnZ = H/(HNK) = (H 4+ K)/K = Z/nZ. Generalize this to the case when m and n are
not necessarily coprime.

Exercise 2.9.18. Use the second isomorphism theorem for groups to prove the following.

(i) 3Z/15Z = Z/57Z, and

(ii) 6Z/30Z = 27, /10Z. (Hint: Take H = 6Z and K = 10Z).
Theorem 2.9.19 (Abelianization). Let G be a group. Then upto isomorphism there exists a unique
pair (Gay, ®) consisting of an abelian group Gay, and a surjective group homomorphism @ : G — Gap,
satisfying the following universal property: given any abelain group H and a group homomorphism
f: G — H, there exists a unique group homomorphism f : Gar, — H such that f o & = f.

G ! H
@i /
f
Gab

The group Gy, is known as the maximal abelian quotient or the abelianization of G.
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Proof. Uniqueness: First we prove uniqueness of the pair (Gap,, ®) upto unique isomorphism
of groups. Suppose that (K, g) be another such pair consisting of an abelian group K and
a surjective group homomorphism g : G — K such that the pair (X, g) satisfies the above
universal property. Taking (H, f) = (Gab, ®) we find a unique group homomorphism d: K —

G such that ® o g = .
G
> g

K Gan K

Applying universal property of (G, ®) with (H, f) = (K, g), we have a unique group homo-
morphism g : G,p — K such that g o ® = g. Since the composite map go ® : K — K is
a group homomorphism, by the universal property of the pair (X, g) we have go & = Idg,

where Idg : K — K is the identity map of K. Similarly, we have ® o g = Idg,, . Therefore, both
g: K — Gapand @ : G, — K are isomorphism of groups. Since both ¢ and g are unique and
®og=®and go® =g, we conclude that the pair (X, g) is uniquely isomorphic to (Gap,, ®).

Existence: To prove existence of the pair (Gap, @), consider the elements of G of the form
[a,b] := aba~ b1,
where a,b € G, called commutators in G. Clearly [a,b] = e if G is abelian. Let
[G,G] := (aba'b" :a,b € G)

be the subgroup of GG generated by all commutators of elements of G. The subgroup [G, G| is
known as the commutator subgroup or the derived subgroup of G. Since

ghg™" =ghg~'h"'h=g,h]h, Y g,h € G,

taking h € [G,G] we see that [G, G] is a normal subgroup of G. Let G,1, := G/[G, G| be the
associated quotient group, and let ¢ : G — G, be the natural quotient map whichsendsa € G
to the coset a[G, G| € G/|G, G] = Gap. Let us denote by @ the image of a € G in G/[G, G] under
the quotient map ® : G — G/[G, G]. Since

(ab)(ba)~t = aba" v~ € [G,G], Va,beQG,

we have @b = ba in G/[G, G]. Therefore, G/|G, G| is commutative. If f : G — H is a group
homomorphism, then

f(la,b]) = f(aba™'b~") = [f(a), f(b)], Va,b € G.

Now suppose that H is abelian. Then for any a,b € G, we have [f(a), f(b)] = e, and so
[a,b] € Ker(f). Therefore, [G,G] C Ker(f). Consequently, by universal property of quotient

(see Definition 2.7.1) there is a unique homomorphism f : G/[G,G] — H such that f o & = f.
This completes the proof of existence part. O

Proposition 2.9.20. The commutator subgroup of S, is Ay, for all n > 3.
Proof. Since the signature map sgn : S,, — po = {1, —1} defined by

sgn(o) = 1, ifoiseven,
& 1 -1, ifoisodd,
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is a group homomorphism (see Lemma 2.6.4), we have sgn(c)~! = sgn(o), for all ¢ € S,,.
Therefore, given o, 7 € S,, we have

sgn([o, 7]) = sgn(c ot oo t771) = sgn(o) sgn(7) sgn(o) *sgn(r) ! = 1.

Therefore, [0, 7] € A, forall o, 7 € S,,, and hence [S,,, S] C A,. To show the reverse inclusion,
note that A, is generated by 3-cycles, for all n > 3 (see Exercise 2.5.34), and any 3-cycle (i j k)
in S, can be written as

(i j k)= j)o(i k)o(i j)"to(i k)7,
which is an element of [S,, S,]. Thus A4,, C [S,,, S, ]. This completes the proof. O
Exercise 2.9.21. Show that the abelianization of S,, is isomorphic to Z,, for all n > 3.

Exercise 2.9.22. Given any two groups H and K, let Hom(H, K) be the set of all group homo-
morphisms from H into K. Fix an integer n > 3.

(i) Given an abelian group G, show that there is a natural bijective map Hom(S,,G) —
Hom(Zs, G).

(ii) Find the number of elements in Hom(S,,, Z4 X Zg).

Exercise 2.9.23. Show that S; has no normal subgroup of order 8. (Hint: If H is a normal
subgroup of S, of order 8, the quotient group S4/H is abelian, and hence A, = [S4,S,] C H, a
contradiction.)

Theorem 2.9.24 (Third Isomorphism Theorem). Let H and K be normal subgroups of G with
K C H. Then we have an isomorphism of groups (G/K)/(H/K) = G/H.

Proof. Since H and K are normal subgroups of G and K C H, that K is a normal subgroup of
H, and the associated quotient groups

i ¢:G—-G/H,
(ii) ¥ : G - G/K, and
(i) n: H - H/K
exist. Let ti : H — G be the inclusion of H into G. Then the composite map

HS 6% G/K
is a group homomorphism with kernel K, and hence we get an injective group homomorphism
H/K — G/K.

Given h € H and a € G, we have aha™! € H, and so (aK)(hK)(aK)™! = (ah)K -a 'K =
(aha=')K € H/K. Therefore, H/K is a normal subgroup of G/K, and hence the associated
quotient group 7 : G/K — (G/K)/(H/K) exists. Consider the diagram

G id G/K

% B |-

G/H —"" = (G/K)/(H/K)
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Note that H/K € (G/K)/(H/K) is the neutral element of the group (G/K)/(H/K). Moreover,
the composite map 7 o 9 is a surjective group homomorphism with kernel

Ker(moy) ={a € G:n(¢(a)) = e}
={aeG:7m(aK)=c¢e}
={aeG:aK(H/K)=H/K}
={aeG:aK € H'K}
={a € G:a € H}, sincethemap H/K — G/K is injective.
=H

Then by first isomorphism theorem (Corollary 2.9.3) applied to the group homomorphism 7o)
we have the required isomorphism G/H = (G/K)/(H/K) of groups. O

Corollary 2.9.25 (Correspondence Theorem). Let f : G — H be a surjective group homomorphism.
Consider the following two sets:

(i) A:=the set of a subgroups of G containing Ker(f), and
(ii) B:= the set of all subgroups of H.

Then there is an inclusion preserving bijective map
- A—-B

such that a subgroup N € A of G is normal in G if and only if ®(N) is normal in H.

Proof. Define a map ® : A — B by sending a subgroup N of G containing Ker(f) to its image
f(N). Note that f(IV) is a subgroup of H by Proposition 2.6.7 (i), and hence is an element of B.
Conversely, given a subgroup K of H, its preimage f~!(K) is a subgroup of G by Proposition
2.6.7 (ii). Since ey € K we have Ker(f) = f~1(e) C f~1(K). Thus, f~}(K) € A. This gives a
map

U:B— A K [THK).

It remains to show that ® and ¥ are inverse to each other. Given N € A, we have (Vo ®)(N) =
7Y f(N)) D N. Ifa € f~Y(f(N)), then f(a) = f(b), for some b € N. Then f(ab™1) =
f(a)f(b)~! = ey implies ab~! € Ker(f) C N, and so a = (ab=!)b € N. Therefore, (Vo ®)(N) =
7Y (f(N)) = N, forall N € A, and hence ¥ o ® = Id 4. Conversely, given K € B, we have
(® o U)(K) = f(f7Y(K)) = K, since f is surjective. Thus ® o ¥ = Idg. This completes the
proof. O

Exercise 2.9.26. Let H be a normal subgroup of a group G. Show that every subgroup of G/H
is of the form K /H, for some subgroup K of G containing H.

Exercise 2.9.27. Let 7 : G — (@ be a surjective group homomorphism. Let H be a normal
subgroup of G and let 7 : H — @ be the restriction of 7 on H. If K = H N Ker(w), show that
the induced map 7y : H/K — Q is injective, and it identifies H/K as a normal subgroup of Q.

2.10 Direct Product & Direct Sum of Groups

Definition 2.10.1. The direct product of a family of groups {G,, : « € A} is a pair (G, {7 }aca),
where G is a group and {7, : G = Gg}aen is a family of group homomorphisms such that
given any group H and a family of group homomorphisms {f, : H — G, }aca there exists a
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unique group homomorphism f : H — G such that 7, o f = f,, forall o € A.

H
I
SIr3 fa
¥ ™
G = G,

Theorem 2.10.2 (Existence & Uniqueness of Product of Groups). The direct product of a family of
groups exists and is unique upto a unique isomorphism in the sense that if (G,{go : G — Gua}aca)
and (H,{ho : H — Gq}aen) are direct products of the family of groups {G,, : o € A}, then there
exists a unique isomorphism of groups ¢ : G — H such that hy o ¢ = gq, for all o« € A. We denote by

[1 Ga the underlying group of the direct product of the family of groups {G. : a € A}.
acA

Proof. Since (G, {ga}acn) is a direct product by assumption, for the test object (H,{hg : H —
Gg}pea) we have a group homomorphism ¢ : G — H such that 7, 0 ¢ = ha, Vo € A
Interchanging the roles of (G, {ga}aca) and (H, {ha}aeca) we have a group homomorphism
Y : H — Gsuchthatm, 09 = go, Va € A. Sincebothy oy : G — Gand Idg : G — G are
group homomorphisms satisfying

fao(wO@):fa and fooldg = fo, Ya €A,

it follows that ¢ o ¢ = Idg. Similarly, ¢ 0 ¢y = Idy, and hence ¢ : G — H is the unique
isomorphism such that h, 0 p = g, Vo € A.

For a construction, let

[[Go={f:A= ] Gal|fla) € Ga, VaeA}

acA a€EA

Given f,g € [] G, we define
aEA
fg:A— H Ga
acA
by
(fg)(a) == f(a)g(a), YVaeA.

Clearly fg € ][ Ga, and (fg)h = f(gh), V f,g,h € [] Ga. Lete, € G, be the neutral
element, for alTeaAe A. Thenthemape : A = [[ Ga giflgn by e(a) = eq, ¥V a € A satisfies
ef =fe=f,Vfe [] Ga Given f € [] Gq Vzef[:ieﬁne F7te [1 Gaby f7l(a)=(fa)"t €
Ggo, Va € A. Then fc;”iAl =e=f71f. Tﬁeer/;fore, Il Gaisa grou%%jl\zor each 8 € A, we define a
map 7g : HA Go — Ggby mg(f) = f(B). Then ﬂgaiesAa group homomorphism. Given a group H

ae
and a family {hy : H = Gq}aen Of group homomorphisms, we defineamap ¢ : H — [[ Ga
acA
thatsends a € H to the function ¢, : A - [] G, defined by ¢,(a) = ha(a), ¥ o € A. Thenitis
acA
straight forward to verify that ¢ is a group homomorphism satisfying 7,09 = ho, Va € A. O

Example 2.10.3 (External Direct Product of G4,...,G,). Let Gy,...,G, be a finite family of
groups, not necessarily distinct. Define a binary operation on the Cartesian product G :=
Gi x -+ x Gy by

(2104) (al, ey an) . (blv e ,bn) = (albl, ey anbn),
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where a;,b; € G;, foralli =1,...,n. Given a;, b;,¢; € G;, foreachi € {1,...,n}, we have

((al,...7an) . (bl,...,bn)) c(e1y .o en) = (a1by, ..o anby) - (e, .0 en)
(a1bi)cy, .- ., (anbn)cn)
aj (blcl)a ey an(bncn))

al,...,an)-((bl,...,bn)~(01,...,%))

Therefore, the above defined binary operation on the set G is associative. Let ¢; € G; be the

neutral element of G;, for all ¢ € {1,...,n}. Then given any a; € G;, for each i, we have
(a1y...,an) - (e1,...,en) = (a1,...,an) = (€1,...,€n) - (a1,...,an).
Since
(a1, an) - (a7t . at) = (e1, ... en) = (a7t ant) - (a, - .. an),
we conclude that (a1, ...,a,)"! = (a7,...,a;") € G. Therefore, G = Gy x --- x G, is a group

with respect to the binary operation defined in (2.10.4).
Foreachi e {1,...,n}, let

(2105) pi - Gy x---xG, =G
be the map defined by
(2.10.6) pi(ar,...,an) =a;, V(a1,...,an) € Gy X -+ X Gy

Clearly p; is a surjective group homomorphism (verify!). Let H be a group and let {f; : H —
Gi}i<i<n be a family of group homomorphisms. Defineamap f: H - G1 x --- X G,, by

(2.10.7) F(B) = (fi(h), ..., fa(R)), Y he H.

Then given any a, b € H we have

f(ab) = (fi(ab), ..., fu(ab))
= (f1(a)f1(b), - -, fn(a) fn (D))
= (f1(a), .-, fu(a))(f2(D), .- ., fu (D))

= [(a)f(b)-

Therefore, f is a group homomorphism. Clearly p; o f = f;, for alli € {1,...,n}. Suppose
that f' : H — G; x --- x G, is any group homomorphism such that p; o f' = f;, for all
i € {1,...,n}. Let h € H be arbitrary. Let f'(h) = (a1,...,a,) € G1 X -+ X G,. Then
fith) = (pio f)(h) =pi(ay,...,an) = a;, foralli € {1,...,n}, and hence f'(h) = (a1,...,a,) =
(fi(h),..., fn(h)) = f(h). Therefore, f* = f, and hence by universal property of product of
groups (see Definition 2.10.1) we conclude that G; x - - x G, is a direct product of Gy, ..., G,.
The group G x - - x Gy, is also known as the external direct product of G+, ..., Gp.

Corollary 2.10.8. The direct product of a finite family of finite groups G, ..., Gy, is a group of order
|G1| - - - |Gy|. Moreover, Gy x - - x G, is abelian if and only if G, is abelian, for all i € I,,.

Exercise 2.10.9. Given any two groups G and H, show that Z(G x H) = Z(G) x Z(H).

Proposition 2.10.10. Let G := Gy X --- x G, be the external direct product of the family of groups
Gi,...,Gy. Foreachi € I, := {1,...,n}, let H; = {(a1,...,a,) € G :aj =e;, Vj#i} CG.
Then we have the following.

(i) H; is a normal subgroup of G, forall i € I,,.

(ii) Every element a € G can be uniquely expressed as a = hy - - - hy,, with h; € H;, forall i € L.
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(iii) H; N (H1 cee Hi—lHi—i-l s Hn) = {6},f07’ alli € 1,.

(iv) G=H,---H,.

Proof. (i) Since (e1,...,e,) € H;, so H;y # 0. Leta := (a1,...,ay),b := (b1,...,b,) € H;.
Then a; = e; = b;, V j # i, and hence Clj_lbj = e¢j, for all j # i. Therefore, a™'b =
(al_lbl, ...,ay'b,) € H;, and hence H; is a subgroup of G. Let a = (ay,...,a,) € G and
b:= (b1,...,b,) € H;be arbitrary. Then b; = ¢;, for all j # i, and so ajbjaj_1 = ajejaj_l =ej,

for all j # i. This shows that aba™! = (ay,...,a,)(b1,...,by)(a;?, ... a; ') € H;. Therefore, H;
is a normal subgroup of G, for all ¢ € I,.

(ii) Let « € G be given. Then a = (a1,...,a,), where a; € G;, Vi € I,,. Let h; € G be
the element whose i-th entry is a; and for j # i, its j-th entry is ¢; € G;. In other words,
hi = (hila ey hzn) € G, where

Then h; € H;, foralli € I,,, and hy---h, = (ai,...,a,) = a. To show uniqueness of this
expression, let a = k; - - - k,, where k; € H;, for alli € I,,. If k;; € G; denote the j-th entry of
k; € H;, then k;; = e, for j # 4. Therefore,

(al,...,an)za:hl---hnzkl--~kn=(kzll,...,kznn).

Then a; = hy;, for all ¢ € I,,. This shows that k; = h;, for all ¢ € I,,. This proves uniqueness.

(iii) Let @ = (a1,...,a,) € H;N(Hy---H;_1H;}1---Hy,). Since a € H;, we have a; =
ej, Vj#i. Sincea€ Hy---H;_1H;1--- Hy, we have

(21011) a = hl tee hi,1h¢+1 s hn
for some h; € H;, V j # i. Since hj = (hyj,...,hn;) € H;j, we have
hij =er € G, VE#J.

If b, denote the k-th component of the product Ay - - - hi—1hit1---hyp in Gy X -+ - X G, then

€, if k= ’i,
(2.10.12) bk:{ e i k£

Comparing the j-th component of both sides of the equation (2.10.11), we have

aj:ejeGj,VjEIn.

(iv) It follows from (ii) that G C H; --- H,,. Since H; is a subgroup of G, for all i € I,,, we
have H; - -- H,, C G. Hence the result follows. O

Lemma 2.10.13. Let G be a group. Let H, K be two normal subgroups of G such that H N K = {e}
Then given any h € H and k € K we have hk = kh. Consequently, [H, K| = {e}.

Proof. Since H is normal in G, we have (hk)(kh)~! = h(kh='k~') € H. Similarly, since K is
normal in G, we have (hk)(kh)™! = (hkh~ ')k~ € K. Therefore, (hk)(kh)™' € HN K = {e},
and hence hk = khin G. O

Exercise 2.10.14. Is the conclusion of the Lemma 2.10.13 still holds if we assume exactly one of
H and K is normal in G?

Lemma 2.10.15. Let G be a group. Let H and K be normal subgroups of G. Then HK is a normal
subgroup of G.
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Proof. Since H and K are normal in G, it follows that HK is a subgroup of G. Let a € G and
h € H,k € K be arbitrary. Then a(hk)a™! = (aha™')(aka™') € HK. Therefore, HK is a normal
subgroup of G. O

Definition 2.10.16. Let G be a group and let Hy,..., H,, be normal subgroups of G. Then G
is said to be an internal direct product of Hi, ..., H, if every element a € G can be uniquely
expressed as a = hy --- hy, with h; € H;, foralli € {1,...,n}.

Proposition 2.10.17. Let G = G X - - - X G,, be the external direct product of a finite collection of (not
necessarily distinct) groups Gu, ...,Gy, and H; :== {(a1,...,a,) € G : a; = e;, ¥V j # i}, for each
i € Ip,. Then G is an internal direct product of Hy, . .., Hy, respectively.

Proof. It follows from Proposition 2.10.10 (ii) that given a € G there exists a; € H;, for each
i € I, such that a = a4 - - - a,. To show that this expression for a is unique, let

a':al"'an:bl"'bna

for some a;,b; € H;, Vi € I,,. Note that each H; is a normal subgroup of G by Proposition
2.10.10 (i), and K; := Hy---H,—1H;41 --- Hy, is a normal subgroups of G by Lemma 2.10.15.
Moreover, H; N K; = {e} by Proposition 2.10.10 (iii). Then using Lemma 2.10.13 we have

e=ata= (a1 -ap) by by,
-~-af1b1-~-bn
= (ay"b1) -+ (a,, " bn).

Then for each i € I,,, we have

b tai = (ay 'by) -+ (a; ' bi1)(a; ybig) -+ (ay'bn) € Hi N K; = {e},

and hence a; = b;, for all i € I,,. This completes the proof. O

Theorem 2.10.18. Let {H.,...,H,} be a finite collection of normal subgroups of G. Let K; :=
Hy---Hi_1Hiy1---Hy, Vi € I,. Then G is an internal direct product of Hy, ..., H, if and only

if
(i) G=H,---H,,and
(ii) H;NK,; ={e}, foralli € L,.

Moreover, in this case we have an isomorphism of groups G = Hy x - -+ x Hy,.

Proof. Suppose that G is an internal direct product of Hi, ..., H,, respectively. Let a € G be
given. Then for each i € I,, there exists unique a; € H; such that a = a;---a,. There-
fore, G € Hy---H,, and hence G = H;---H,. Leta € H, N K;. Then a € H; gives
a = e;---€;_1ae;41 - -e,, Where e; € H; is the neutral element of H;, for all j. Again,
a € K, = Hy- "Hi—lHi+1 ---H, giVGS a = a1 A;—1€0;41 " Ay, where a; € Hj,v J 75 7.
Then form the uniqueness of representation of a as product of elements from H;’s, we see that
a = e. Therefore, H; N K; = {e}.

Conversely, suppose that (i) and (ii) holds. By (i) given a € G, there exists a; € H;, for each
i € I, such that a« = a; ---a,. Suppose that for each i € I,, there exists b, € H; such that
a = by - - - by. Then as shown in the proof of the above Proposition, we have

e=a"la

-1 —1
oarthy by,

(al e a”ﬂ)_lbl .. bn
a
(a7101) -~ (ay, " bn).-
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Then for each ¢ € I,,, we have

by ta; = (ay 'b1) -+ (a; ' bim1)(a; ) biga) -+ (ay, 'bn) € Hi N K; = {e},

and hence a; = b;, for all i € I,,. This completes the proof. O]

Exercise 2.10.19. Let G be a finite group of order mn, where gcd(m,n) = 1. If H and K are
normal subgroups of G of orders m and n, respectively, show that G is isomorphic to the direct
product group H x K.

Corollary 2.10.20. If m,n € Z with gcd(m,n) = 1, then Zyy, = Ly, X Ly,

Theorem 2.10.21 (Direct Sum of Abelian Groups). Let {4, : a € A} be a family of abelian
groups. Then there is a pair (A, {ta}aecn), consisting of a group A and a family of group monomor-
phisms

{ta : Ao = A} e

satisfying the following universal property:

o Given any abelian group T and a family of group homomorphisms {fo : Aa — T}aen, there
exists a unique group homomorphism f : A — T such that f o1, = fo, Vo € A

The pair (A, {ta }aen) is uniquely determined by the universal property, and is called the direct sum of
the family of groups {Aa }aen, and is denoted by €@ A,

aEN

Proof. Uniqueness of the pair (A, {ta }aca) follows from the universal property. We now prove
existence. We write the group operation of A, additively. Given a € A, let 0, be the neutral

element of A,, and 7, : [[ As — A, be the natural projection homomorphism. Given z €
BEA

I1 A, letz, := 7w, () € A,. Consider the subset

aEA

A= {gg € H Ay | mo(z) =04, forall but finitely many o € A} .

a€cA

Clearly 0 := (0a)aca € 4, and given any z,y € A, 1o (2 — y) = o — Yo = 04, for all but finitely

many « € A, and so x —y € A. Therefore, A is a subgroup of [[ A,. For each a € A, let
acA
la : Ao — A be the map defined by sending a € A, to the element ¢, (a) = x, where

. a, if pB=aq
71-5(%)'_{65, if B#a.

Clearly ¢, is an injective group homomorphism, for all « € A. Let T be an abelian group. Let
fa 1 Aq — T be a group homomorphism, for each o € A. Defineamap f: A — T by

fla) =" falmala)), Ya € A.

a€A

Note that the above sum is finite. Since f, : A, — T is a group homomorphism, f,(0,) = 07 €
T, and hence f(to(g9)) = fa(g), for all g € A,. Therefore, f o1y = fo, ¥ @ € A. Uniqueness of f
is easy to see (verify!). O
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Let {A;,...,A,} be a finite collection of abelian groups and let A; x --- x A,, be the direct
product. Then for each i € {1,...,n} the natural map

@iZA¢—+141X---X‘An

defined by sending a € A; to the element ;(a) € A; x --- x A,, whose i-th component is ¢ and
all other components are 0, is a group homomorphism. Since A4;’s are abelian, so is their direct
product A; x --- x A,. Then by universal property of direct sum (Theorem 2.10.21), there is a
unique group homomorphism

fiAI®D- DA, = A x---xX A,
such that f o, = ¢;, foralli € {1,...,n}. Clearly f is injective; in fact, it is the inclusion
n n
map. Given any (as,...,a,) € A1 X -+ x A, wehave (> ti(a;)) = > wila;) = (a1,...,an).
i= i=1
Therefore, f is surjective, and hence is an isomorphism. Thus, for a finite index set A, we have

P As = [] Aa

aEN a€A

Remark 2.10.22. If we remove abelian hypothesis from A,’s and also from the test objects T’
in Theorem 2.10.21, then also the associated pair (A, {to }aca) exists, and is known as the free
product of the family of groups {4, : @ € A}; in this case construction of A requires the notion
of free groups which will be introduced in §2.19. In general, construction of free products
produce infinite non-abelian groups even for a finite family consisting of at least two non-
trivial finite groups, and hence they are different from the direct sum and direct product of
groups (see Theorem 2.19.3).

Definition 2.10.23. Let A be an abelian group. A subset S of A is said to be Z-linearly indepen-
dent if given any finite number of distinct elements a4, ..., a, € S, wehaveria;+:--+rpa, =0
impliesry =--- =71, =0.

Exercise 2.10.24. Let G and H be cyclic groups of prime order p generated by z € Gandy € H,
respectively. Show that G x H is an abelian group of order p? that is not cyclic. Show that

(z), (zy), (zy?®),..., (zyP~') and (y)
are all possible distinct subgroups of G x H of order p.

Exercise 2.10.25. Find the number of distinct subgroups of order p of the cyclic group Zjn,
where p > 0 is a prime number and n € N.

211 Group Action

Let G be a group and let X be a non-empty set.
Definition 2.11.1. A left G-action on X is a map

c:GxX—X

satisfying the following conditions:

(i) o(e,z) =2, Vz € X,and
(ii) o(b,o(a,z)) =o(ba,x), Ya,be G, z € X.

For notational simplicity, we write ax for o(a, x).
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Remark 2.11.2. We can define a right G-action on X to be a map
T: X xG—=X

satisfying the following conditions:

(i) 7(z,e) =z, Yz e X,and
(ii) 7(7(z,a),b) = 7(x,ab), Ya,be G, z € X.

For notational simplicity, we write za for 7(a, x).

Example 2.11.3. (i) Given a group G and a non-empty set X, the map
c:GxX =X

defined by
ola,z) =z,Va€e Gand z € X,

is a left G-action on X, known as the trivial left G-action on X . Similarly, we have a trivial
right G-action 7 : X x G — X on X that sends (z,a) € X x Gtoz € X.

(ii) For each integer n > 2, the group S,, acts on the set I,, := {k € N: 1 < k < n} by sendin
g group y g
(0,i) € Sy, x I, to 0(i) € I,. Clearly for o = e € S,, we have o(i) =i, Vi € I,, and
(o7)(i) =0o(7(3)), Vi€ I,, 0,7 € S,.

(iii) Given a non-empty set X, let S(X) be the group of all symmetries on X; its elements are
bijective maps from X onto itself, and the group operation is given by composition of
maps. Then the group S(X) acts on X from the left.

(iv) Let H be a normal subgroup of a group G. For example, H = Z(G). Then the map
¢ : G x H— H defined by

o(a,h) =aha ', Yac G, he H,
is a G-action on H. Indeed, (e, h) = ehe™ = h, YV h € H, and
ola, (b, h)) = @(a,bhb™") = a(bhdb™)a™" = (ab)h(ab)~' = @(ab,h), Y a,b € G, h € H.

Lemma 2.11.4 (Permutation representation of a G-action). Given a group G and a non-empty set X,
there is a one-to-one correspondence between the set of all left G-actions on X and the set of all group
homomorphisms from G into the symmetric group S(X) on X.

Proof. Let o be the set of all left G-actions on X, and let # := Hom(G, S(X)) be the set of all
group homomorphisms from G into S(X). Define amap ® : &/ — % by sending a left G-action
0:G x X — X to the map

(2.11.5) fo:G—= S(X)
that sends a € G to the map
(2.11.6) fola) : X - X, x— o(a,x).

We first show that f,(a) is bijective and hence is an element of € S(X). Let z,y € X be such
that o(a, z) = o(a,y). Then we have
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Therefore, f,(a) is injective. Given y € X, note that z := o(a™!,y) € X, and that

fa(a)(z) = o(a,2) = o(a,0(a™",y)) = ole,y) = y.
This shows that o, is surjective. Therefore, f,(a) € S(X), forall a € G. To show f, : G — S(X)
is a group homomorphism, note that given a,b € G we have
fo(ab)(z) = o(ab, ) = o(a,a(b, x))
= fo(a)(fo(b)())
= (fs(a)o fs(b))(x), V2 € X,

and hence f,;(ab) = fs(a) o f-(b), Va,b € G. Therefore, f, is a group homomorphism, known
as the permutation representation of G associated to the left G-action o on X. Thus, f, € #.

Given a group homomorphism f : G — S(X), consider the map o; : G x X — X defined

by
of(a,xz) = fla)(z), Vae G,z € X.

We show that o is a left G-action on X. Since f : G — S(X) is a group homomorphism,
f(e) =Idx in S(X). Therefore, o¢(e,x) = f(e)(z) =z, Vo € X. Since f : G — S(X) is a group
homomorphism, given a,b € G we have f(ab) = f(a) o f(b), and hence given any z € X we
have

flab)(x) = (f(a) 0 f(D)) ()
= as(ab,x) = f(a)(os(b, ))
= os(ab,x) = of(a,o5(b,x)).

Therefore, o is a left G-action on X. Thus we get a map V¥ : % — ./ defined by

U(f) =04V fEB

It remains to check that ¥ o ® = Id,, and ® o ¥ = Idg. Given a left G-action7: G x X — X
on X, we have (Vo ®)(7) = ¥(f;) = gy,. Since

O’fT(CL,.II) = fr(a)(z) =7(a,2), ¥ (a,2) € G x X,

we have (¥ o ®)(7) = 7, V7 € &/. Therefore, ¥ o & = Id,,. Conversely, given a group
homomorphism g : G — S(X), we have (® o ¥)(g) = ®(0y) = fo,. Since f,,(a) = o4(a, —) =
g(a), YV a € G, we conclude that (® o ¥)(g) = g, Vg € #A. Therefore, o U = Idg. This
completes the proof. O

Definition 2.11.7 (Faithful action). A left G-action ¢ : G x X — X on a non-empty set X is
said to be faithful if Ker(f,) = {e}, where f, : G — S(X) is the permutation representation of
G associated to o (see (2.11.5) and (2.11.6) in Lemma 2.11.4).

Example 2.11.8. The multiplicative group R* := R\{0} actson V' := R" by scalar multiplication
R*xV =V

defined by
o(t,(ar,...,an)) = (tay,...,ta,), vt € R*, (a1,...,a,) € R".

Note that ¢ is a left R*-action on V' = R". The permutation representation
fo :R* = S(V)
associated to o is given by sending ¢t € R* to the map

fot): V=V, (a1,...,an) — (tag, ..., tay).
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Since

Ker(f,) ={t eR": f,(t) =1dy}
={teR* :tv=v,VveV}
= {1}
is trivial, we conclude that o is a faithful left R*-action on V' = R".

Example 2.11.9. Recall that Cayley’s theorem (Theorem 2.6.23) says that any group G is isomor-
phic to a subgroup of the permutation group S(G) on G. This can be explained using group
action as follow. Consider the left translation map

c:GxG—=G

defined by
o(a,z) = ax, Va,x € G.

Note that ¢ is a left G-action on itself, called the left regular action of G on itself, and the associated
permutation representation f, : G — S(G) that sends a € G to the bijective map

fola) : G = G, x+— ax,
Then f, is a group homomorphism with

Ker(f,) ={a € G: fo(a) =1dg}
={aeG:ax=x,VreG}

= {ea}
is trivial, and hence o is a faithful action.
Given a left G-action ¢ : G x X — X on X, we define a relation ~, on X by setting
(2.11.10) x ~gy if y=o(a,z), forsomea € G.

Note that ~, is an equivalence relation on X (verify!). The ~,-equivalence class of z € X is
the subset

(2.11.11) Orbg(z) :={o(a,z) :a € G} C X,
called the orbit of x under the left G-action ¢ on X. Note that

(i) = € Orbg(x), Va € X, and
(ii) given z,y € X, either Orbg(z) = Orbg(y) or Orbg(z) N Orbg(y) = 0.
Therefore, X is a disjoint union of distinct G-orbits of elements of X. A G-actiono : Gx X — X

is said to be transitive if Orbg(x) = Orbg(y), for all 2,y € X. Therefore, o is transitive if and
only if given any two elements z, y € X, there exists a € G such that o(a,z) = y.

Proposition 2.11.12. Let 0 : G x X — X be a left G-action on X. For each x € X the subset
Gy ={aeG:o(a,x) =1}
is a subgroup of G, called the stabilizer or the isotropy subgroup of x, and sometimes it is also denoted

by Stabg(z).

Proof. Since o(e,z) = z, e € G,. Let a,b € G, be arbitrary. Then z = o(a, z) gives

-1

,o(a,x)) =0c(a a,z) =o(e,x) = x.
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Since o (b, z) = x, we have o(a"'b,2) = o(a™!,0(b,z)) = 0(a™!,z) = z. Therefore, a='b € G,.
Thus G, is a subgroup of G. 0

Exercise 2.11.13. Let 0 : G x X — X be a left G-action on X. If f, : G — S(X) is the group

homomorphism induced by o, then show that Ker(f,) = () G., where G, is the isotropy
rzeX
subgroup of x € X.

Corollary 2.11.14. Let X be a non-empty set equipped with a left G-action o : G x X — X. Let H be
a normal subgroup of G. Then the G-action o induces a left G/H-action  : (G/H) x X — X making
the following diagram commutative

GxX——2 X

ﬂHXIdxl

(G/H)x X —2— = X

ifandonlyif H C (| Gy, where Gy :={g € G:0(g,z) =z}, Vo € X.
reX

Proof. Let f, : G — S(X) be the permutation representation of G in S(X) associated to the
G-action o on X. Note that Ker(f,) = [\ Ga.
reX
Let H be a normal subgroup of G. Let 71y : G — G/H be the associated quotient group

homomorphism. Suppose that H C (| G, = Ker(f,). Then by universal property of quotient,
reX

there exists a unique group homomorphism fs : G/H = S(X) such that f, o 7y = f,. Then
fo induces a left G/H-action ¢ : (G/H) x X — X which sends (aH,z) € (G/H) x X to
o(aH,x) := fo(aH)(x) = fo(a)(x) = o(a,z) € X.

Conversely, suppose that o : (G/H) x X — X be a left G/H-action on X making the above

diagram commutative. Let
fz:G/H = S(X)

be the permutation representation of G/H into S(X) associated to . Then ¢ can be recovered
from the group homomorphism

G ™ G/H 217 §(X)
using the construction given in Lemma 2.11.4. From this, we have H C Ker(f,). O]

Exercise 2.11.15. Let o : G x X — X be a left G-action on X. Given z € X and a € G, show
that G, = aGra~t, where y = o(a,z) € X. Deduce that if o is a transitive G-action on X, show
that Ker(f,) = () aGra™ 1.

aceG
Exercise 2.11.16. Let X be a non-empty set. Let G be a subgroup of the symmetric group S(X)

on X.Giveno € Gand z € X we have 6G o~ ! = G (2)- Deduce that if G acts transitively on

X, then N 0G0~ = {e}.
ceG

Corollary 2.11.17 (Generalized Cayley’s Theorem). Let H be a subgroup of G, and let X = {aH :
a € G} be the set of all distinct left cosets of H in G. Let S(X) be the symmetric group on the set X.
Then there exists a group homomorphism ¢ : G — S(X) such that Ker(p) C H.

Proof. Consider the map ¢ : G x X — X defined by

o(a,bH) = (ab)H, Ya € G,bH € X.
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If bH = cH, for some b, c € G, then given any a € G, we have (ab)~!(ac) = b 'a tac=b"'c €
H. Therefore, o is well-defined. Note that o(e,bH) = bH, ¥ bH € X, and o(a1,0(az,bH)) =
o(a1,asbH) = (a1a9b)H = o(araq,bH), for all a;,as € G and bH € X. Therefore, o is a left
G-action on X. Then ¢ give rise to the group homomorphism

fo:G— S(X)
that sends a € G to the map
ola,—): X = X, =+ o(a,x).
Since Ker(f,) C G, for all z € X by Exercise 2.11.13, taking « = H € X we see that
Gyg={a€G:o(a,H)=H}={a€eG:a€c H} =H,
and hence Ker(f,) C H. O

Exercise 2.11.18. Let H be a subgroup of G, and let X be the set of all left cosets of H in X. Let
o : G x X — X be the left G-action on X defined by o(a,bH) = (ab)H, V a,b € G. Show that o
is a transitive action.

Exercise 2.11.19. Let G be a group and H a subgroup of G with [G : H] = n < co. Show that
there is a normal subgroup K of G with K C H and [G : K] < nl.

Corollary 2.11.20 (Cayley’s Theorem). Any group G is isomorphic to a subgroup of the symmetric
group S(G) on G.

Proof. Take H = {e} in Corollary 2.11.17. O

Exercise 2.11.21. Let G be a group of order 2n, where n > 1 is an odd integer. Show that G has
a normal subgroup of order n.

Solution: By Cayley’s theorem (Theorem 2.6.23) G is isomorphic to a subgroup, say H, of the
symmetric group S(G) via the monomorphism ¢ : G — S(G) = Sy, defined by sending a € G
to the bijective map ¢, : G — G thatsends b € G to ab, for all b € G. Since 2 divides |G| = 2n, G
has an element, say a € G, of order 2 by Exercise 2.2.37. Since for any b € G we have ¢, (b) = ab
and ¢, (ab) = a®b = eb = b, we see that ¢, € S(G) is a product of transpositions of the form
(b ab). Since |G| = 2n, the number of transpositions appearing in the factorization of ¢, is n, an
odd number. So ¢, is an odd permutation. This shows that the subgroup H := ¢(G) contains
an odd permutation. Define a map

f:H—{-1,1}
by sending o € H to

(o) = 1, if ois an even permutation,
" | -1, ifoisanodd permutation.

Note that f is a surjective group homomorphism, and hence by first isomorphism theorem
(Theorem 2.9.3) we have
H/Ker(f) ={-1,1}.
Then we have
_ |H| _2n
[Ker(f)] [Ker(f)
Therefore, Ker(f) is a normal subgroup of H of order |Ker(f)| = n. Since G = H via ¢, taking

inverse image of Ker(f) C H along the isomorphism ¢ we get a required normal subgroup of
G of order n. 0

2 =[{-1,1} = |H/Ker(f)|
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Corollary 2.11.22. Let G be a finite group of order n. Let p > 0 be a smallest prime number that divides
n. If H is subgroup of G with |G : H] = p, then H is normal in G.

Proof. Let H be a subgroup of index pin G. Let X := {aH : a € G} be the set of all distinct left
cosets of H in G. Then | X| = p. Let f : G — S(X) be the map that sends a € G to

fla): X = X, bH — (ab)H.

Then f is a group homomorphism. Then K := Ker(f) C H by Corollary 2.11.17, and [G : K] =
[G : H]-[H : K] = pk, where k := [H : K]. Since |X| = [G : H] = p, the quotient group
G/K is isomorphic to a subgroup of the symmetric group S, by first isomorphism theorem
(see Theorem 2.9.3). Then by Lagrange’s theorem pk = |G /K| divides |S,| = p!. Then k divides
(p—1)!. Since k is a divisor of n and p is the smallest prime divisor of n, unless & = 1, any prime
divisor of £ must be greater than or equal to p. But since k divides (p — 1)!, any prime divisor
of k is less than p. Thus we get a contradiction unless k = 1. Therefore, [H : K] = k =1, and so
H = K = Ker(f). Thus H is a normal subgroup of G. O

Warning: The above Corollary 2.11.22 does not ensure existence of a subgroup H of G of index
smallest prime factor of |G|.

Exercise 2.11.23. Let G be a finite group of order p”, for some prime number p and integer
n > 0. Show that every subgroup of G of index p is normal in G. Deduce that every group of
order p? has a normal subgroup of order p.

Exercise 2.11.24. Let G be a non-abelian group of order 6. Show that G has a non-normal
subgroup of order 2. Use this to classify groups of order 6. (Hint: Produce a monomorphism
into S3).

Proposition 2.11.25. Let o : Gx X — X bealeft G-actionon X. Fixx € X, and let G/G, = {aG, :
a € G} be the set of all distinct left cosets of G in G. Then the map ¢ : G/G, — Orbg/(z) defined by
v(aGy) = o(a,x), Y a € G, is a well-defined bijective map. Consequently, [G : G| = |Orbg(x)|.

Proof. Leta,b € G be such that aG,, = bG,.. Then a~'b € G,, and so o(a~'b,z) = z. Applying
o(a,—) both sides, we have o (b, z) = o(a,o(a'b,z)) = o(a, ). Therefore, the map ¢ is well-
defined. To show that ¢ is injective, suppose that o(a,z) = o(b, z), for some a,b € G. Then
o(a=tb,x) = o(at,0(b,2)) = o(a=t,0(a,x)) = o(e,z) = z. Therefore, a~'b € G, and hence
aG, = bG,. Thus g is injective. To show ¢ is surjective, note that o(a,z) = ¢(aG;), for all
a € G. Therefore, ¢ is bijective.

Corollary 2.11.26 (Class Equation). Let 0 : G x X — X be a left G-action on a non-empty finite set
X, and let O be a subset of X containing exactly one element from each G-orbits in X. Then we have

X =) [G:Gal.

zeO

Proof. Since X = || Orbg(xz), the result follows from Proposition 2.11.25. O
z€O

Exercise 2.11.27. Let G be a group. Let H be a subgroup of G such that |H| = 11 and [G : H] =
4. Show that H is a normal subgroup of G.

Exercise 2.11.28. Fix n € N. Show that the map ¢ : GL,,(R) x R” — R" defined by
o(A,v) = Av, ¥V A € GL,(R), v = (v1,...,v,)" € R",

is a left GL,,(R)-action on R". Is o transitive? Find the set of all GL,,(R)-orbits in R".
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Exercise 2.11.29. Let o : G x G — G be the left G-action on itself given by
o(a,b) =aba™', Ya,beG.

If f, : G — S(G) is the permutation representation of G associated to o, show that Ker(f,) =
Z(G).

Theorem 2.11.30 (Burnside’s Theorem). Let G be a finite group acting from the left on a non-empty
finite set X . Then the number of distinct G-orbits in X is equal to

1
@ZF(G%

acG

where F(a) = #{x € X : ax = x}, the number of elements of X fixed by a.

Proof. Let T := {(a,z) € G x X : ax = z}. Note that |T| = > F(a). Also [T| = }_ |G|,
aeG zeX

where G, is the stabilizer of x € X. Let {z1,...,z,} be the subset of X consisting of exactly
one element from each of the G-orbits in X. Note that two elements = and y of X are in the
same G-orbit if and only if Orbg(z) = Orbg(y). Since |G|/|Gz| = [G : Gy] = |Orbg(x)|, we
conclude that |G, | = |G| whenever z and y are in the same G-orbit. Then we have

Y Fl)=TI=)" |Gl

acG zeX

M=

(Orbe (2|,

i=1

NE

|G| = n|G],
i=1

1 >~ F(a). This completes the proof. O

and hence n =
‘G| aceG

2.12 Conjugacy Action & Class Equations

Let G be a group. Consider the map
(2.12.1) 0:GxG— G, (a,b) — aba™".
Note that o is a left action of G on itself, known as the conjugation action. Given a € G, its
o-stabilizer

Go={9€G:gag ' =a}={g€G:ga=ag}.

is a subgroup of G, called the centralizer or the normalizer of a in G. The equivalence relation
~s on G induced by the conjugation action of G on itself is known as the conjugate relation on
G. Anelement b € G is said to be a conjugate of a € G if there exists g € G such that b = gag™'.

Given a € G, its G-orbit
(2.12.2) Orbg(a) = {gag™' : g € G}
consists of all conjugates of a in G, and is called the conjugacy class of a in G.

Definition 2.12.3. A partition of an integer n > 1 is a finite sequence of positive integers
T

(n1,...,n,)suchthatny >--- > n,and ) n; =n.
Jj=1
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Exercise 2.12.4. Fix an integer n > 2. Show that the number of conjugacy classes in S, is the
number of partitions of n.

Solution: Let C = {C4,...,Cy} be the set of all distinct conjugacy classes in S,,. Let P,, be the
set of all partitions of n. Define a map ¢t : C — P,, by sending C; € C to the cycle type of an
element of C;, for all 7. Since two elements of S,, are conjugate in 5, if and only if they have the
same cycle type by Theorem 2.5.22, the map ¢ is well-defined and injective. Given a partition

(n1,...,n,) of n, we have a permutationoc = (1 --- ny)o---o(ny+---+n,_1+1 -+ ny+
---+n,) € S, whose cycle type is precisely (n1,...,n,). Therefore, t is surjective, and hence is
bijective, as required. O

More generally, G acts on its power set X := P(G) by conjugation:
(2.12.5) o0:GxP(G)— PG, (a,8)+ aSa™?,
where

0, if S=0.

Two non-empty subset S and T of G are said to be conjugates if there exists a € G such that
T = aSa~'. Given a subset S C G, its stabilizer

uSa-! — { {aga=* € G:ge S}, if S#0, and

(2.12.6) Ng(S):={a € G:aSa™* =S}

for the conjugation action in (2.12.5), is a subgroup of G, known as the normalizer of S in G.
Then we have the following.

Corollary 2.12.7. Let S be a non-empty subset of G. Then the number of distinct conjugates of S in
G is the index [G : Ng(S)]. In particular, the number of distinct conjugates of an element a € G is
[G : Cg(a)], where C(a) is the centralizer of a in G.

Proof. Follows from Proposition 2.11.25. O

Exercise 2.12.8. Leto = (k1 --- k,) € S, bear-cyclein S,,. Let I,\ o := I, \ {k1, ..., kr} C I,
and let

S(I,\o):= {T €S, : T‘{k’l,.--,h} = Id{kh.__,kq‘}} )

(i) Show that S(I,, \ o) is a subgroup of S,.
(ii) Show that |Cg, (o) =r(n — 7).

(iii) Deduce that Cs, (0) = {0t € S, : 7 € S(I, \ 0)}. (Hint: Note that o commutes with
e,0,...,0""!, and with all 7 € S, whose cycles are disjoint from that of o (precisely

elements of S(I, \ 0)). Then use part (ii).)
(iv) Compute Cg, (o), where o = (1 2 3) € S7.

Exercise 2.12.9. Let G be a group and S a non-empty subset of G. If H is the subgroup of G
generated by S, show that N¢(S) < Ng(H).

Note that given a € G we have C(a) = G if and only if a € Z(G). Therefore, we have the
following.

Theorem 2.12.10 (Class Equation). Let G be a finite group, and let {a, ..., a,} be the subset of G
consisting of exactly one element from each conjugacy class that are not contained in Z(G). Then we

have
n

Gl =12(G)| +Y_IG : Ca(ar))-

i=1
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Proof. Follows from Corollary 2.11.26 by taking X = G and o to be the conjugation action of G
on itself. ]

Corollary 2.12.11. Let G be a group of order p™, where p > 0 is a prime number and n € N. Then G
has non-trivial center.

Proof. The class equation (see Theorem 2.12.10) for the conjugacy action of G on itself gives

p" =G| =12(G) + [ : Calai),

=1

where {a1, ..., a,} is a subset consisting of exactly one element from each conjugacy class that
are not in the center Z(G). Since C(a;) is a subgroup of G, by Lagrange’s theorem |C¢(a;)|
divides |G| = p", and hence its index [G : Cg(a;)] = |G|/|Cs(a;)| is of the form p™i, for
some n; € NU {0}. Since a; ¢ Z(G), we have Cg(a;) # G, and so n; > 1, for all 4. Since
Z(G) is a subgroup of G, we have |Z(G)| > 1. Then by above class equation we see that
|Z(G)| = p™ — > p™ is divisible by p. Therefore, Z(G) # {e}. O
i=1

Corollary 2.12.12. Let G be a group of order p?, where p > 0 is a prime number. Then G is isomorphic
to either Z,2 or Zy, X ZLp.

Proof. Since Z(G) # {e} by Corollary 2.12.11, we see that G/Z(G) has order p or 1, and hence
is cyclic. Then G is abelian by Exercise 2.8.22. If G has an element of order p?, then G is cyclic.
Suppose that G has no element of order p?. Then every non-neutral element of G has order p.
Fixana € G\ {e}, and take b € G\ (a). Then we have |(a, b)| > |(a)| = p, and hence (a,b) = G.
Since both a and b has order p, it follows that (a) x (b) = Z, x Z,. Note that both H := (a)
and K := (b) are normal subgroups of G of order p. Since H N K is a subgroup of both H
and K, |[H N K| is either p or 1 by Lagrange’s theorem (Theorem 2.7.5). If |H N K| = p, then
K = HnN K = H, which contradicts the choice of b € G \ H. Therefore, H N K = {e}. Since
HK is a subgroup of G by Theorem 2.4.3 with

|H| - |K| 2
= — = = G
|HK]| HNK]| p |G
by Lemma 2.4.7, we have G = HK. Then G = H x K by Theorem 2.10.18. O

Proposition 2.12.13. Let G be a finite abelian group of order n > 2. If p > 0 is a prime number
dividing n, then G has an element of order p.

Proof. We prove this by induction on n = |G|. The case n = 2 is trivial. Assume thatn > 2,
and the result holds for any abelian group of order r with 2 < r < n. Leta € G\ {e} be
given. If (a) = G, then we are done by Proposition 2.3.14. Assume that H := (a) is a proper
non-trivial subgroup of G. Let m := ord(a). Then 1 < m < n. If p | m, then by induction
hypothesis H has an element, say b, of order p, and we are done. Assume that p { m. Since G
is abelian, H is a normal subgroup of G. Then p divides the order of the quotient group G/H.
Since |G/H| = n/m < n, by induction hypothesis G/H has an element, say bH € G/H, of
order p. Then bH = (bH)? = H in G/H, and so b? € H. Since H = (a) is a cyclic group
of order m, we have (b™)? = (b?)"™ = e. Then ord(b™) | p. Since p is a prime number, either
b™ = e or ord(b™) = p. If b™ = ¢, then (bH)™ = b™H = eH = H, and so p = ord(bH) | m. This
contradicts our assumption that p { m. Therefore, b # e, and hence ord(b™) = p. O

Theorem 2.12.14 (Cauchy). Let G be a finite group of order n. Then for each prime number p > 0
dividing n, G has an element of order p.
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Proof. Fix a prime number p > 0 that divides n. The case n = 2 is trivial. Suppose that n > 2,
and the statement holds for any finite group of order r with 2 < r < n. The class equation for
G associated to the conjugacy action of G on itself is given by

(2.12.15) Gl =12(G)| +)_IG : Cala)],

i=1

where {a1, ..., a,} is the subset of G consisting of exactly one element from each G-orbits of that
does not intersect Z(G). Since a € Z(G) if and only if Cz(a) = G, we see that |Ce(a;)| < n, for
allie {1,...,7}.If p | |Cc(a;)|, for some i € {1,...,r}, then by induction hypothesis C(a;) C
G has an element of order p, and we are done. Suppose that p t |Ca(a;)|, Vi € {1,...,7}. Since
p|n=|G|and |G| = |Ce(a;)|[G : Ca(a;)], wesee thatp | [G : Cg(a;)], Vi€ {1,...,r}. Since
Z(@G) is a subgroup of G, |Z(G)| > 1. Then from class equation above, we see that p divides
|Z(G)|. Since Z(G) is abelian, it contains an element of order p by Proposition 2.12.13. This
completes the proof. O

As an immedjiate corollary, we have the following result, known as the converse of Lagrange’s
theorem for finite abelian groups.

Corollary 2.12.16. Let G be a finite abelian group of order n. Let m > 0 be an integer that divides n.
Then G has a subgroup of order m.

Proof. The cases n = 2 and m = 1 are trivial. So we assume that m > 1 and n > 2, and we
prove it by induction on n. Suppose that the statement holds for any finite abelian group of
order r with 2 < r < n. Let G be an abelian group of order n. Since m > 1, there is a prime
number, say p € N, such that p | m. Then m = pk, for some k € N. Then by Cauchy’s theorem
(Theorem 2.12.14) G has a subgroup, say H, of order p. Since G is abelian, that H is normal in
G. Then the quotient group G/H exists and we have 1 < |G/H| = n/p < n. Since m | n, we
have n = m/{, for some ¢ € N. Then

e pht _

G/H| =" = el

p p p

Since G/ H is abelian group with |G/H| < nand k | |G/H, by induction hypothesis G/H has
a subgroup, say S, of order k. Now S = K/H, for some subgroup K of G containing H by
Exercise 2.9.26. Since |K| = |S| - |H| = kp = m, that K is a required subgroup of G of order m.
This completes the proof. O

2121 p-groups

Definition 2.12.17 (p-group). Let p € N be a prime number. A group G is said to be a p-group if
every element of G has order equal to a power of p. A subgroup H of G is called a p-subgroup
of G if H is a p-group.

Example 2.12.18. D, and K are 2-groups.

Example 2.12.19. Given a prime number p > 0, let
Lpy = {;ZEQ : m,neZ}.

Clearly Z,) is a non-empty subset of Q. Since given m/p", k/p* € Z ), we have

m k mpt — np"
E—yziﬁﬁgeﬂw
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we conclude that Z,) is a subgroup of Q. Note that ord(m/p™) is a power of p, and hence Z,)
is a p-group.

Proposition 2.12.20. A finite group G is a p-group if and only if |G| = p™, for some n € N.

Proof. If |G| = p”, for some n € N, then given a € G, ord(a) | p" by Lagrange’s theorem
(Theorem 2.7.5), and hence ord(a) = p", for some r € {1,...,n}, since p is a prime number.

Conversely suppose that G is a finite p-group. If |G| # p", for all n € NU {0}, then there
exists a prime number ¢ # p such that ¢ | |G|. Then by Cauchy’s theorem G has an element of
order ¢, which is not of the form p", for any n € N. This contradicts our assumption that G is a
p-group. This completes the proof. O

Lemma 2.12.21. Subgroup of a p-group is a p-group.

Proof. Follows from the definition. O

Lemma 2.12.22. Let G be a group (not necessarily finite), and p > 0 a prime number. Then any
p-subgroup of G is contained in a maximal p-subgroup of G.

Proof. Let P be a p-subgroup of G. Let P be the set of all p-subgroups of G containing P. Given
P,Q € Pwedefine P < Q if P C Q. Clearly this is a partial order relation on P. Given a chain

(Py)n>0 of elements from P with P = Py < P; < ---, the subset P := |J P, is a p-subgroup
n>0

of G (verify!), and hence is an element of P. Then by Zorne’s lemma P has a maximal element,

say Pnax € P. This completes the proof. O

Proposition 2.12.23. Any finite non-trivial p-group have non-trivial center.

Proof. Let G be a p-group of order p”, for some prime number p > 0 and positive integer n > 0.
Then the class equation for the conjugacy action of G on itself gives

Gl=12(@)|+ Y 1G:Cala),

a€O\Z(G)

where O is a subset of G consisting of exactly one element from each G-orbits. Since Cg(a) = G
if and only if @ € Z(G), we see that [G : Cg(a)] > 1lforalla € O\ Z(G). Since |G| = p", it
follows from Lagrange’s theorem that p divides [G : Cg(a)], Va € O\ Z(G). Then from the class
equation above we see that p divides |Z(G)|. Since |Z(G)| > 1, it follows that Z(G) # {e}. O

Corollary 2.12.24. Let p > 0 be a prime number. Then every group of order p? is abelian.

Proof. Let G be a group of order p?. Then by Proposition 2.12.23 above, Z(G) # {e}. Then
|Z(G)| € {p,p*} by Lagrange’s theorem. If |Z(G)| = p, then the quotient group G/Z(G) has
order p, and hence is cyclic by Corollary 2.7.9. Then G is abelian by Exercise 2.8.22, which is a
contradiction. Therefore, |Z(G)| = p? = |G|, and hence G = Z(G). Therefore, G is abelian. [

Lemma 2.12.25. Let G be a group of order p™, where p > 0 is a prime number and n € N. Let X bea
non-empty finite set admitting a left G-action. Let

Xo={zeX:axr=2,VaeqG}

be the subset of X consisting of elements with singleton G-orbits. Then |X| = |Xo| (mod p). In
particular, if p 1 | X |, there exists x € X with singleton G-orbit.
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Proof. The class equation for the left G-action on X gives

X|=1Xol+ > [G:Gal,
z€O\ Xo

where O is the subset of X consisting of exactly one element from each G-orbits of X. Since
[G: Gz] = |Orbg(z)| > 1, forall z € O\ Xy, and |G| = p”, we conclude that p divides [G : G,],
forall z € O\ Xy. Then the result follows by reducing the class equation above modulo p. If
p1|X|, then | Xy| # 0 (mod p), and hence the second part follows. O

Corollary 2.12.26. Let G be a finite group having a subgroup H of order p™, where p > 0 is a prime
number and n € N. Then [G : H] =, [Ng(H) : H]. In particular, if p | [G : H], then Ng(H) # H.

Solution: Take X = {aH : a € G} to be the set of all left cosets of H in G. Then H acts on X by
o:HxX — X, (h,aH) — (ha)H.

Note that o is a well-defined map and is a left H-action on X. Moreover the subset of X
consisting of singleton H-orbits is given by

Xo={aH € X :0(h,aH)=aH,Vhe H}
={aH €X:a *hac HVhec H}
={aH € X :a € Ng(H)},

we have | Xo| = [Ng(H) : H]. Since | X| = [G : H], the result follows from Lemma 2.12.25. O

2.13 Simple Groups

Definition 2.13.1. A group is said to be simple if it has no non-trivial proper normal subgroup.
Example 2.13.2. Any group of prime order is simple (c.f. Lagrange’s theorem).

Lemma 2.13.3. A finite abelian group G is simple if and only if |G| is a prime number.

Proof. If |G| = p, for some prime number, then its only subgroups are {e} and G, and hence G
is simple in this case. To see the converse, note that if |G| is composite, then |G| = pk, for some
prime number p and an integer £ > 1. Then by Cauchy’s theorem (Theorem 2.12.14) G has an
element, say a € G, of order p. Since G is abelian, the cyclic subgroup H := (a) of G is normal
in G. Since 1 < |H| = p < |G|, it follows that H is a non-trivial proper normal subgroup of G.
Thus G is not simple. O

Exercise 2.13.4. Let G be a finite group of order pg, where p and ¢ are primes (not necessarily
distinct). Show that G is not simple.

Solution: If p = ¢, then |G| = p?, and so G is abelian by Corollary 2.12.24. Then G is not simple
by Lemma 2.13.3. If p # ¢, without loss of generality we assume that p > ¢. Then by Cauchy’s
theorem G has a subgroup, say H, of order p. To show G is not simple, it suffices to show that
H is normal. If possible suppose that there exists a € G such that aHa™! # H. Since both
H and K, := aHa™! are subgroups of G of order p, their intersection H N K, is a subgroup
(see Lemma 2.2.18) of order 1 or p by Lagrange’s theorem (Theorem 2.7.5). Since H # K, by
assumption, |H N K,| = 1. Then the subset H K, C G has cardinality

|H| - |Ka|

HE,| = 1 el
=T AR,

=p® >pg=|G|,

which is a contradiction. Therefore, aHa~! = H, ¥V a € G, and hence H is normal in G. O
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Exercise 2.13.5. Let GG be an abelian group having finite subgroups H and K of orders m and
n, respectively. Show that G has a subgroup of order d := lem(m, n).

Solution. Since G is abelian, both H and K are normal in GG, and hence H K is a subgroup of G
of order at most |H| - |K| = mn. Since H and K are subgroups of H K, by Lagrange’s theorem
both m and n divides |H K|, and hence d := lem(m,n) divides |HK|. Since G is abelian, so is
its subgroup H K. Then by Corollary 2.12.16 H K has a subgroup, say V of order d. Since V' is
also a subgroup of G, we are done. O

Exercise 2.13.6. Let G be a non-abelian group of order p?, where p is a prime number. Show
that | Z(G)| = p.

Solution: Since G has order p?, it has non-trivial center. Since G is non-abelian, so Z(G) # G.
Then by Lagrange’s theorem Z(G) has order p or p?. If |Z(G)| = p?, then G/Z(G) has order
p, and hence is a cyclic group. Then G is abelian by Exercise 2.8.22, which is a contradiction.
Therefore, | Z(G)| = p. O

Exercise 2.13.7. Let G be a finite abelian group. Let n € N be such that n | |G|. Show that the
number of solutions of the equation 2™ = e in G is a multiple of n.

Solution: The set of all solutions of " = e in G is given by
H:={acG:a" =¢}.

Since e" = e, we see that H # (). Let a,b € H be given. Since G is abelian, we have (a=1b)" =
(a™)~'" = e"'e = ¢, and so a~'b € H. Therefore, H is a subgroup of G. Since G is a finite
abelian group and n | |G|, by Corollary 2.12.16 G has a subgroup, say K of order n. Then by
Corollary 2.7.7 we have a” = e, V a € K, and hence K C H. Since |K| = n, by Lagrange’s
theorem we have n | |H]|. O

Exercise 2.13.8. Let G be a group of order p", where p > 0 is a prime number and n € N. Let H
be a subgroup of G of order p"~!. Show that H is normal in G.

Solution: Follows from Corollary 2.11.22. O

Exercise 2.13.9. Show that N := {e, (1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} C A4 is the unique
subgroup of order 4 in A4, and hence is normal in A4. Conclude that A4 is not simple.

213.1 Simplicity of A,, forn > 5

Next we show that A, is simple, for all n > 5. We begin with some useful observations.
Lemma 2.13.10. Fix an integer n > 5, and let H be a normal subgroup of A,,. If H contains a 3-cycle,
then H = A,,.

Proof. Suppose that H contains a 3-cycle, say 0 = (a b ¢) € H. Since A, is generated by
3-cycles, it suffices to show that any 3-cycle is contained in H. Let 7 = (u v w) be any 3-cycle.
Let © € S,, be such that

m(a) = u, 7(b) =v and w(c) = w.

Then by Proposition 2.5.12 we have
norn~ ! = (m(a) 7(b) 7(c)) = (u v w)=r.

Since H is a normal subgroup of A,, it follows that 7 € H whenever m € A,,.
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If 7 is odd, then we replace = with 76, where 6 = (d f) € S, for some d, f € I,, \ {a,b,c}
with d # f, and we can always do this because of our assumption n > 5. Since the 2-cycle
§ = 01 is disjoint from o, they commutes, and so (7)o (7d) ! = mron~! = 7, as required. This
completes the proof. O

Corollary 2.13.11. Fix an integer n > 5, and let H be a normal subgroup of A,. If H contains a
product of two disjoint transpositions, then H = A,,.

Proof. Let (a b) and (¢ d) be two disjoint transpositions in S,, such that (a b) o (¢ d) € H.
To show that H = A,, in view of Lemma 2.13.10, it suffices to show that H contains a 3-cycle.
Since n > 5, we can choose an element f € I,, \ {a,b, ¢, d}. Then the 3-cycle 7 := (¢ d f) € A,.
Since H isnormal in A,,, we have o (a b)o (c d)onm~! € H. But

rolab)o(cdor =(cd floab)olc dolc f d
— (a b)o(d /).

Since H is a group containing (a b) o (¢ d) and (a b) o (d f), we have
m=(cd f)=(ab)o(cd)o(ab)o(d f)ecH,
as required. This completes the proof. O

Theorem 2.13.12. The alternating group A,, is simple, for all n > 5.

Proof. Let H be a non-trivial normal subgroup of A,,. To show A4, is simple, thanks to Lemma
2.13.10, it suffices to show that H contains a 3-cycle.

Let 0 € H \ {e} be a permutation that moves the smallest number of elements, say r, of
I, :={1,...,n}. If r = 2, then o must be a transposition, which is not possible since then o
would be odd while H C A,,. Therefore, r > 3. If we can show that r = 3, then 0 must be a
3-cycle and we are done.

Suppose on the contrary that » > 3. Write o as a product of finite number of disjoint cycles,
say o0 = o1 0--- 00k, Whereo;isacyclein S,, forall j € {1,...,k}.

Step 1: Suppose that o; is a transposition, for all j € {1,...,k}. Then k > 2, for otherwise
o = o1 would be odd, a contradiction. Let 01 = (a b) and 02 = (¢ d) in S,,. Since o, and o are
disjoint cycles and n > 5, there exists an element f € I, \ {a,b,c,d}. Let 7 := (¢ d f) € S,.
Since T is even, T € A,,. Since o € H and H is normal in A,,, we have ro7~! € H. Since H is a

group,
7 =0c"'ror™ € H.

Since o permutes a and b, we see that ¢'(a) = aand ¢’(b) = b. If u € I, \ {a,b,¢,d, f} is such
that o(u) = u, then ¢/(u) = (6~ *ro771)(u) = u. Since o’(f) = ¢, we have o’ # e. Therefore,
o' € H\ {e} moves fewer elements of I,, than o, which is a contradiction. Therefore, at least
one o; must be a cycle of length > 3. Since disjoint cycles commutes, we may assume that
or=(a b c ---)isacycle of length > 3.

Step 2: If r = 4, then either o is a product of two disjoint transpositions or is a 4-cycle. The first
possibility is ruled out by step 1 and the second possibility is ruled out since a 4-cycle is odd
and o € H C A,,. Therefore, r > 5.

Step 3: Since n > 5, we can choose d, f € I, \ {a,b,c} withd # f. LetT = (¢ d f) € A,.
As before, H being a normal subgroup of A,, containing o, we have ¢’ := o~ 'ro7~! € H.
Since o'(b) # b, we have 0’ # e. Given any u € I, \ {a,b,c,d, f}, if o(u) = u, then ¢'(u) =
(07 rro77 1) (u) = u. Moreover o(a) # a while ¢’ (a) = a. Therefore, 0’ € H \ {e} moves fewer
elements of I,, than o, which is a contradiction. Therefore, we must have r = 3, and hence o
must be a 3-cycle. Hence the result follows. O
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2.13.2 *Simplicity of PSL,(F), forn > 3

Definition 2.13.13. A field is a triple (F, +, -) consisting of a non-empty set F' together with two
binary operations + : F' x F' — F and - : F' x F' — F, called the addition and multiplication of
scalars, respectively, satisfying the following properties:

(F1) The pair (F, +) is an abelian group.

(F2) The pair (F*, ") is an abelian group, where F* := F'\ {0}.

(F3) The multiplication operation - distribute from the left and right over the addition opera-
tion, i.e.,

a(b+ c¢) = ab+ ac, and (a + b)c = ac+ be, V a,b,c € F.

Example 2.13.14. (i) The triples (Q, +,-), (R,+,-) and (C, +, -) are fields. The triple (Z, +, -)
is not a field because 2 # 0 in Z, and it has no multiplicative inverse in Z.

(ii) (Zp,+,-)1is a field if and only if p > 0 is a prime number.
Fix an integer n > 2 and a field F. For i,j € {1,...,n} with i # j and a non-zero scalar
c € F*, let A;j(c) be the n x n matrix whose (i, j)-th entry is ¢, and all other entries are 0 € F.

Then the matrices of the form
Eij (C) = In + Aij

are called the n x n elementary matrices over F.
Exercise 2.13.15. Show that E;;(c) is invertible with E;;(c) ™! = E;;(—c).
Exercise 2.13.16. Giveni,j € {1,...,n} with ¢ # j, show that the map
F* — GL,(F), ¢— E;;(c),
is a group homomorphism.
Lemma 2.13.17. (i) The group SL,,(F) is generated by the elementary matrices.
(ii) If A € GL,,(F), then A can be written as A = SD, where S € SL,,(F) and

(L1 0
o= (% 3)

is the n x n diagonal matrix over F' whose (n,n)-th entry is d := det(A) and all other diagonal
entries are 1.

Proof. Use elementary row operations. O
Corollary 2.13.18. Fix an integer n > 3. Then SL,,(F') is equal to its own commutator subgroup; i.e.,

Proof. Since SL,,(F) is generated by the elementary matrices, it suffices to show that E;;(c)
is a commutator, for all i # j and ¢ € F*. Since n > 3, we can choose an element k& €
{1,...,n}\ {¢,j}. Then by a direct computation (do it!) we have

Eij(c) = Eir(c)Ey;(1) Bk (—c) E; (—1).
This completes the proof. O

Exercise 2.13.19. Fix an integer n > 3. Given any abelian group G, show that any group
homomorphism from SL,, (F) into G is trivial.
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Exercise 2.13.20. (i) Show that Z(GL,,(F)) = {\[, : A € F*} & ™.

(ii) Show that Z(SL,(F)) = {\, : A € F*, A" = 1} = p,(F), where pu,(F) = {A € F: \" =
1} is the group of all n-th roots of unity in F'.

Definition 2.13.21. The quotient groups
PGL, (F) := GL,(F)/Z(GL,(F))
and PSL,(F) := SL,(F)/Z(SL,(F))

are called the projective general linear group over F' and the projective special linear group over F,
respectively.

Exercise 2.13.22. Fix an integer n > 2 and a field F'.
(i) Show that (F*)" := {a™ € F* : a € F"*} is a subgroup of F'* and the map p,, : F** — (F™*)",
that sends every element a € F* to its n-th power a" € (F*)", is a group homomorphism.

(ii) Show that the map det : GL,,(F) — F*, defined by sending A € GL,,(F) to its determi-
nant det(A4) € F*, is a surjective group homomorphism.

(iii) Show that Z(GL,,(F)) is sitting inside the kernel of the composite group homomorphism

det,

¢ : GL,(F) <% F* I B/ (F*)",
and hence give rise to a surjective group homomorphism

& : PGL,(F) — F*/(F*)".

(iv) Let 7 : GL,(F) — PGL,(F) be the natural quotient group homomorphism. Show that
Ker(m o) = Z(SL,,(F')), where ¢ : SL,,(F') — GL,(F) is the inclusion map (group homo-
morphism).

(v) Conclude that the induced group homomorphism
mot: PSL,(F) — PGL,(F)

is injective, and it identifies PSL,,(F') as a normal subgroup of PGL,,(F'). (Hint: Use Exer-
cise 2.9.27).

(vi) Show that the associated quotient group PGL,, (F)/ PSL,,(F) is naturally isomorphic to
F*/(F*)". The following diagram of group homomorphisms commutes.

n

Z(SLf(F))C—> Z(GLH(T)) o ETE (an
SLn(F)( GLn(F) det Fi*
PSL,, (F)C PGL, (F) Fr/(F)"

(vii) Conclude that PSL,,(F') = PGL,,(F) if F* contains n-th roots of all of its elements.

(viii) Let F' be a finite field having ¢ := p™ elements, where p > 0 is a prime number and n € N.
Find the orders of PGL,,(F) and PSL,,(F).
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Note that the group GL,,(F') acts on the n-dimensional F-vector space V := F" by
(A,v) = Av, ¥V (A,v) € GL,(F) x V.
Given a non-zero F-linear functional A : V — F, the subset
Hy :=Ker(\) ={v eV :A(v) =0}

is a F-linear subspace of V' of dimension n — 1, called the hyperplane section associated to A. Note
that every F-linear subspace H of V of dimension n — 1 is a hyperplane section associated
to some F-linear functional on V. Indeed, given H, the associated quotient space V/H has
dimension 1, and hence is F-linearly isomorphic to F'. Then the quotient map

q:V—>V/H=F
is the required F-linear functional on V' whose kernel is precisely H, as required.
Definition 2.13.23 (Transvection). An element T' € GL,,(F) is said to be a transvection if there
exists a hyperplane section H C V of V such that
(i) T fixes each vectors of H,i.e., Tv =v, Vv € H, and

(ii) for each v € V, there exists a vector h(v) € H such that Tv = v + h(v).

To emphasis dependency on H, we may call T a transvection with respect to the hyperplane H.

Exercise 2.13.24. Let H) = Ker(\) be a hyperplane section in V associated to a linear functional
A:V — F.Givenavector u € Hy, defineamap 7, : V — V by

T,(v) :=v+ Av)u, Vv e V.

(i) Show that T}, is an invertible F'-linear map, and hence with respect to the standard ordered
basis for V' = F™ it defines an element of GL,, (F); for notational simplicity, we denote it
by the same symbol T,.

(ii) If T € GL,,(F)\{I,} is a transvection, show that there exists a F-linear functional A : V" —
F and and a vector u € Hy = Ker(A) such that T'(v) = v+ A(v)u, Vv € V. (Hint: Since
the map = — h(z) := T(x) — x is an F-linear with kernel Ker(h) = H (because T’ # I,,),
the image of h is an 1-dimensional F-linear subspace of V, and hence is generated by a
non-zero vector, say u € H, so that for each z € V, we have h(z) = T'(z) — 2 = A(x)u, for
some A(z) € F, from which one can easily verify that A € V*, as required.)

(iii) Given uy,us € Hy, show thatT,,, o T\, = Ty, 4uy, = Tuy 0 Lo,

(iv) If T € GL,(F) is a transvection with respect to a hyperplane H in V, show that ATA™! is
a transvection with respect to the hyperplane A(H) in V, for all A € GL,,(F).

(v) If S and T are transvections in GL,, (F)) \ {I,,} with respect to the same hyperplane H in V,
so is their product ST. Show by an example that product of two transvections in GL,, (F)
need not be a transvection, in general.

(vi) Show that the elementary matrices E;;j(c) € GL,(F) are transvections, for all ¢ € F.
(Hint: Let ey, ..., e, be the standard ordered basis for V' = F™ over F. Then for given
i,j €{1,...,n} withi # j, we have E;;(c)(ex) = ey, for all k # j, and E;;(c)(e;) = ce;.)

(vii) If T € GL,(F) is a transvection, show that det(T') = 1. (Hint: Let H be the hyperplane
section in V' = F'™ that is point-wise fixed by T'. Choose an ordered basis for H and then
extend it to an ordered basis for V' by choosing one vector from V' \ H.)

Lemma 2.13.25. Fix an integer n > 3.
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(i) The set of all transvections in GL,,(F) is a subset of SLy, (F').

(ii) The set of all transvections in SL,,(F) \ {I,,} forms a single conjugacy class in SL,,(F).

Proof. The first statement follows from Exercise 2.13.24 (vii). To prove the second part, since
conjugate of a transvection by an element of GL,, (F) is again a transvection (see Exercise 2.13.24
(iv)), it suffices to show that given any two transvections 7', 7" € SL,(F) \ {1}, there exists
A€ SL,(F)suchthat 7" = ATAL.

Let H = Ker()\) and H' = Ker(\') be the hyperplane sections in V' = F™ that are point-wise
fixed by T and T”, respectively (c.f. Exercise 2.13.24 (ii)). Then there exists v € H and v’ € H’
such that

T(w)=v+Av)u and T'(v) =v+ N (v)(v), Vv eV.

Since T # I, # T’, we have u # 0 and v’ # 0. Choose some ordered bases {v1,...,v,_1} and

{v{,...,v},_1} for H and H’, respectively, with v; = wand v{ = . Since A and X are surjective,
we can get non-zero vectors v, v, € F" such that A\(v,) = 1 and A(v},) = 1. Then the ordered
bases {vi,...,v,} and {v},...,v,} for V = F" gives an invertible matrix A € GL,(F) such
that
Av; =}, Yie{l,...,n}.
Note that,
N Vi, if ISZ'STL—L
Tlvi) = { Up +u, if i=mn;
and similarly,
p . .
T if 1<i<n-—1,
T'(wy) { ol +u, if i=n.

Then by looking at the images of v],V i € {1,...,n}, under the composite map
—1
visv Lv 4y,
we see that ATA~! = T” (verify!). Thus, T and T” are conjugate in GL,,(F). There is no reason

to expect to have det(A) = 1, in general. Since n > 3, we can replace A with the matrix B,
where

A if i#n-—1,
Bvi) = { det(A)~1!_,, if i=n—1;
so that det(B) = 1 and that BT B! = T” (verify!). This completes the proof. O

Definition 2.13.26. A subgroup G of GL,,(F) is said to be SL,,(F')-invariant if
aGa™' C G, Va € SL,(F).

Lemma 2.13.27. Fix an integer n > 3. Let G be an SL,,(F)-invariant subgroup of GL,,(F'). If G
contains a transvection T # I, then SL,,(F) C G.

Proof. Let T' # I, be a transvection in GL,,(F') such that T € G. Since SL,,(F) is generated by
elementary matrices {E;;(c) : ¢ € F*,i # j} by Lemma 2.13.17, to show SL,,(F') C G, it suffices
to show that elementary matrices are in G. Since all elementary matrices are transvections by
Exercise 2.13.24, they are conjugate to T' in SL,,(F') by Lemma 2.13.25. Now since G is SL,, (F')-
invariant, the result follows. O

Exercise 2.13.28. Let V be a finite dimensional F-vector space and let T : V' — V be an in-
vertible F-linear map. If W C V is an F-linear subspace of V' of dimension r, so is its image
T(W).

Lemma 2.13.29. Fix an integer n > 3. Let G be a SL,, (F')-invariant subgroup of GL,,(F'). If G is not
contained in the center of GL,,(F'), then SL,,(F') C G.



84 Chapter 2. Group Theory

Proof. By Lemma 2.13.27 it suffices to show that G \ {I,,} contains a transvection. Since G Z
Z(GL,(F)) = {cl,, : ¢ € F*}, there exists A € G that moves a straight-line; i.e., there exists
u € F™\ {0} such that Au ¢ {cu: ¢ € F'}. Fixa hyperplane H = Ker(\) in F™ containing v and
v := Au, and consider the transvection

T=T,=1I,+u\ € SL,(F).

Since A : F" — F'is a non-zero F-linear functional, there exists z € F™ such that A\(z) = 1.
Then we have

(AT,)(z) — (TyA) () = A(z + Ma)u) — (Az + A(Az)u)
= Az)Au — AM(Az)u
= Au — A(Ax)u.

Since Au ¢ {cu € V : ¢ € F} by assumption, it follows that AT,, # T, A, and hence B :=
AT, A7YT 1 +# I,,. Since A € G and G is SL,, (F)-invariant subgroup of GL,,(F), it follows that
B=ATA'T Y eaq.

By a direct computation we have
Bz —z = (AMA™'z) — Mz)A(A ™)) v — Mz)u € Spang{u,v} C H,Vz € V.

Then it follows that Bx = (Bx —z) +x € H, Vx € H, and hence B(H) C H. Since B =
ATA~'T~! is invertible and H is finite dimensional, we have B(H) = H. Now we have the
following two cases.

Case 1: Suppose that B commutes with all transvections with respect to H. Let w € H be
given. Since BTy, = T, B, for given any = € V' we have

B(x) + M B(z))w

Bz + Mz)w) = B(z) + A(
= ANB(z))w = A(z)w

= A(z)B(w)

where the last equality follows because B(z) —z € Hand A : V — V/H = F is the quotient
map. Since A # 0, it follows that B(w) = w. Therefore, B point-wise fixes every vector of H.
Since B(z) — x € H, for all z € V, it follows from Definition 2.13.23 that B is a transvection in
GL,(F), as required.

Case 2: Suppose that BT # T'B, for some transvection 7' € GL,,(F') with respect to H. Now
T = T,, for some w € H. Then C := BT,B~'T ! # I,. Since B € G, T, € SL,(F), and
G is SL, (F)-invariant subgroup, it follows that C = B(T,,B~'T,') € G. Note that T;! =
T_,, and BT,,B~" are transvections with respect to the hyperplanes H and B(H), respectively
Since B(H) = H, it follows from Exercise 2.13.24 (v) that the product C = (BT, B~')T,,!isa
transvection with respect to H. This completes the proof. O

Theorem 2.13.30. The group PSL,,(F) is simple, for all n > 3.

Proof. Let H be a non-trivial normal subgroup of PSL,(F') = SL,(F)/Z(SL,,(F)). Then H =
N/Z(SL,(F)), for some normal subgroup H of SL,, (F') that properly contains Z(SL,,(F')). Since
Z(SL,(F)) = Z(GL,(F)) N SL,(F') by Exercise 2.13.20, it follows that IV is not contained in
the center of GL,,(F'). Then SL,(F) C N by Lemma 2.13.29, and hence N = SL,(F). Then
H = N/Z(SL,(F)) = PSL,(F'). This completes the proof. O

Remark 2.13.31. For n = 2, it turns out that PSLy(Z5) = As, and hence is simple, while
PSL4(Z3) = A4, and hence is not simple.
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214 Sylow’s Theorems

Theorem 2.14.1 (Sylow’s Theorem I). Let G be a finite group of order p"m, where p > 0 is a prime
number, v and m are positive integers, and ged(m,p) = 1. Then for each k € {1,...,r}, G has a
subgroup of order p*.

Proof. Since p | |G|, by Cauchy’s theorem G has a subgroup of order p, which proves the state-
ment for the case k = 1. Suppose that 1 < k < r, and G has a subgroup, say H, of order p*~!.
Since H is a finite p-subgroup of the finite group G, considering the class equation of the set
Ly = {aH : a € G} associated to the left translation action of H on £y we see that

[G:H|=,[N¢(H): H]

(see Corollary 2.12.26). Since p | [G : H] and [Ng(H) : H] > 1, we conclude that p | [Ng(H) :
H], and hence H is a proper normal subgroup of Ng(H). Then p divides the order of the
quotient group N¢(H)/H. Then by Cauchy’s theorem N (H)/H has a subgroup, say .S, of
order p. By Exercise 2.9.26 we have S = K/H, for some subgroup K of Ng(H) containing H.
Therefore, K is a subgroup of G of order |K| = |K/H| - |H| = p-p*~1 = p*, as required. This
completes the proof by induction on k. O

Exercise 2.14.2. Let G be a finite group of order p"m, where p > 0 is a prime number, r,m € N
and ged(p,m) = 1. Let H be a subgroup of G of order p*, for some k € {1,...,r — 1}. Show
that there exists a subgroup K of G containing H such that |K| = p**! and H is normal in K.

Solution: Follows from the proof of Sylow’s first theorem (Theorem 2.14.1) by noting that if K
is a subgroup of Ng(H) containing H, then H is a normal subgroup of K. O

As an immediate corollary, we have the following generalization of Cauchy’s theorem.

Corollary 2.14.3. Let G be a finite group. If p" | |G|, for some prime number p > 0 and an integer
n > 0, then G has a subgroup of order p".

Definition 2.14.4 (Sylow p-subgroup). Let G be a finite group and p > 0 a prime number. A
subgroup P of G is said to be a Sylow p-subgroup of G if P is a maximal p-subgroup of G; i.e., P
is a p-subgroup of G that is not properly contained in any other p-subgroup of G.

Example 2.14.5. The symmetric group S3 has three Sylow 2-subgroups, namely
Hy:={e,(1 2)},Hy:={e,(1 3)}, and Hj:={e, (2 3)},

and one Sylow 3-subgroup, namely K := {e, (1 2 3),(1 3 2)}. Therefore, a Sylow p-subgroup,
for certain prime p, need not be unique. In this case, the unique Sylow 3-subgroup K of S; is
normal; this is not a coincidence. We shall see later that a unique Sylow p-subgroup of G must
be normal.

Proposition 2.14.6. Let G be a finite group. Then for each prime number p > 0, G has a Sylow
p-subgroup.

Proof. If p 1 |G|, then {e} is the Sylow p-subgroup of G. If p | |G|, then there exists r € N
such that |G| = p"m, for some integer m > 1 with ged(p, m) = 1 by the fundamental theorem
of arithmetic. Then G has a subgroup, say P, of order p” by Sylow’s first theorem (Theorem
2.14.1). If Q is any p-subgroup of G containing P, then |Q| = p*, for some k € N and that
p" = |P| divides p* = |Q| by Lagrange’s theorem. Then r < k. Since p* = |Q| divides
|G| = p"m by Lagrange’s theorem and since gcd(p, m) = 1, we must have k& < r, and hence
k =r.Then |P| =p" =|Q| gives P = Q. Therefore, P is a required Sylow p-subgroup of G. [
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Exercise 2.14.7. Let G be a finite group of order p"m, where p > 0 is a prime number, r,m € N
and ged(p,m) = 1. Let P be a subgroup of G. Show that P is a Sylow p-subgroup of G if and
only if |P| = p".

Exercise 2.14.8. Let G be a finite group of order p"m, where p > 0 is a prime number, r,m € N
and ged(p, m) = 1. Let P be a subgroup of G. Prove the following statements.

(i) If P is a p-subgroup of G, sois aPa~!, foralla € G.
(ii) If P is a Sylow p-subgroup of G, sois aPa™!, foralla € G.
(iii) If P is the only Sylow p-subgroup of G, then P is normal in G.

Solution: (i) Follows from the fact that [aPa~!| = |P|, foralla € G.
(ii) Follows from (i) and Exercise 2.14.7.

(iii) Since P is the only Sylow p-subgroup of G, using part (ii) we have P = aPa™", for all
a € G. Therefore, P is normal in G. O

Lemma 2.14.9. Let H be a normal subgroup of a group G. If both H and G /H are p-groups, then G is
a p-group.

Proof. Let a € G be arbitrary. Since G/H is a p-group, ord(aH) = p”, for some integer r > 0. If
r = 0, then a € H, and then the result follows since H is a p-group. Assume that r > 0. Then
a?"H = (aH)?" = H gives a? € H. Since H is a p-group, ord(a?") = p", for some integer
n > 0. Then a? " = ¢, and hence ord(a) | p"*™. Hence the result follows. Let G be a finite
group of order p"m, where p > 0 is a prime number, ,m € N and ged(p, m) = 1. O

Exercise 2.14.10. Let G be a finite group. Let P be a Sylow p-subgroup of G. Let a € G be such
that ord(a) = p”, for some integer r > 0. If aPa~! = P, show thata € P.

Solution: Since aPa~! = P, we have a € Ng(P). Note that P C Ng(P). Letb € Ng(P) \ P be
arbitrary. If ord(b) = p*, for some integer k > 0, then considering the quotient homomorphism
7 : Ng(P) — Ng(P)/P we see that ord(bP) divides ord(b) = p*. Then the cyclic subgroup (bP)
of N¢(P)/P has order p™, for some integer m > 0. Now (bP) = K/P, for some subgroup K
of Ng(P) containing P by Exercise 2.9.26. Since b ¢ P by assumption, P & K. Since both P
and K/ P are p-groups, so is K by Lemma 2.14.9. But this contradicts the maximality of P as it
is a Sylow p-subgroup of G. Therefore, ord(b) cannot be a power of p, and hence a € P. O

Theorem 2.14.11 (Sylow’s Theorem II). Let G be a finite group of order p"m, where p > 0 is a prime
number, r,m € N and ged(p, m) = 1. Then any two Sylow p-subgroups of G are conjugate, and hence
are isomorphic.

Proof. Let H and K be two Sylow p-subgroups of G. Let Ly := {aH : a € G} be the set of all
left cosets of H in G. Since G is finite, so is the set L. Define a map

c: KxLyg— Ly
by
o(b,aH) = (ba)H, ¥V (b,aH) € K x L.

If aH = da'H, for some a,a’ € G, then (ba)~!(ba’) = a='b7'ba’ = a='a’ € H, and hence
(ba)H = (ba')H, for all b € K. Therefore, the map o is well-defined. It is easy to check that o is
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a left action of K on L. The subset of all elements of £y with singleton K-orbits is given by

Lyo:={aH €Ly :baH=aH,Vbe K}
={aH € Ly :aba ' € H,¥Vbe K}
={aH € Ly :aKa™* C H}
={aH € Ly :aKa™' = H},
since both H and K are finite Sylow p-subgroups of GG, they have the same cardinality. Since K
is a finite p-group, considering the class equation for £y associated to the K-action o on it, we

have
[G : H] Ep |£H,O|~

Since H is a Sylow p-subgroup of G, we see that p { [G : H]. Therefore, |Lp | > 1, and hence
there exists a € G such that aKa™! = H. Since for any a € G, the conjugation by a map

ca:G— G, ci(g) =a""ga, VgeQG,

is an automorphism of G, we conclude that any two Sylow p-subgroup of G are isomorphic.
This completes the proof. O

Theorem 2.14.12 (Sylow’s Theorem III). Let G be a finite group of order p"m, where p > 0 is a
prime number, r,m € N and ged(p, m) = 1. Let n, be the number of Sylow p-subgroups of G. Then
n, = 1+ kp, for some k € NU {0}, and n,, | m.

Proof. Let X = Syl,(G) be the set of all Sylow p-subgroups of G. Note that X # ) by Sylow’s
first theorem. Fix a Sylow p-subgroup P € X. Note that P acts on X by conjugation:

PxX =X, (a,Q)— aQa .

Let Xo:={Q € X : aQa™! = Q, Va € P}. Since aPa! = P, Va € P, we have P € X;. So
Xo # 0. Let Q € X, be arbitrary. Then aQa™! = Q, forall a € P, and so P C Ng(Q). Since
both P and @ are Sylow p-subgroups of G contained in Ng(Q), we conclude that P and (@ are
also Sylow p-subgroups of Ng(®). Then by Sylow’s second theorem (Theorem 2.14.11) P and
Q are conjugate in Ng(H). So there exists a € Ng(Q) such that aQa™! = P. ButaQa™! = Q,
since a € Ng(Q). Therefore, P = (), and hence X, = {P} is singleton. Then by Lemma 2.12.25
we have n, = |X| =, 1, and hence n, = 1 + kp, for some k € NU {0}.

For the second part, we consider the conjugation action of G on X. Since any two Sylow
p-subgroups of G are conjugate by Sylow’s second theorem (Theorem 2.14.11), we see that X
has only one G-orbit, i.e.,

X = Orbg(P) = {aPa" "' : a € G},

for any Sylow p-subgroup P of G. Since the stabilizer of P € X is
Gp={a€G:aPa~' =P} = Ng(P),
the normalizer of P in G, we see that

np = |X| =[G : Na(P)]

G : P .
=-———-— since P C Ng(P) C G.
No(P) P o)
m
= ————— since |P| = p" by Exercise 2.14.7,
o R
and hence n,, | m. This completes the proof. O

Definition 2.14.13. Let G be a group. A subgroup H of G is said to be a characteristic subgroup
of Gif f(H) C H,forall f € Aut(G).
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For example, for any group G, its trivial subgroup {e} and G itself are characteristic sub-
groups of G.

Proposition 2.14.14. Let G be a group and H a subgroup of G.

(i) If H is a characteristic subgroup of G, then H is normal in G.
(ii) If H is the unique subgroup of a given finite order, then H a characteristic subgroup of G.

(iii) If K is a characteristic subgroup of H and H is normal in G, then K is normal in G.

Proof. (i) Take inner automorphisms b + a~'ba, foralla € G.
(ii) Follows from the fact that automorphisms preserves the order of subgroups.

(iii) Given a € G let
e :G—G

be the map defined by
0a(b) = a"tba, Vb € G.

Then ¢, € Aut(G). Since H is a normal subgroup of G, we have ¢, (H) = a~'Ha = H, and
so the restriction map .|, : H — H is an automorphism of H. Since K is a characteristic
subgroup of H, we have a ' Ka = @a‘H(K) C K. Therefore, K is normal in G. O

Corollary 2.14.15. Let P be a Sylow p-subgroup of G. Then the following are equivalent.

(i) P is the unique Sylow p-subgroup of G, i.e., n, = 1.
(ii) P is normal in G.
(iii) P is characteristic in G.

(iv) All subgroups generated by elements of p-power order are p-groups, i.e., if S is any subset of G
such that for any x € S we have ord(xz) = p™, for some integer n > 0, then (S') is a p-group.

Proof. (i) = (ii): Since for any a € G, a~! Pa is also a Sylow p-subgroup of G, we have ' Pa =
P by (i), and hence P is normal in G.

(i) = (iii): Let f € Aut(G). Since P is a Sylow p-subgroup of G, so is its image f(P) in
G by Exercise 2.14.7. Since any two Sylow p-subgroups of GG are conjugate by Sylow’s second
theorem (Theorem 2.14.11), we have f(P) = a~'Pa, for some a € G. Since P is normal by
assumption (ii), we have f(P) = a~!Pa = P. This proves (iii).

(iii) = (iv): Let S be a subset of G such that for any « € S we have ord(z) = p”, for some
integer n > 0, and let H = (.S') be the subgroup of G generated by S. We show that H is a
p-group. Let x € S be arbitrary. Since ord(z) = p", for some integer n > 0, the cyclic group
(z) is a p-group by Proposition 2.12.20, and hence it is contained in a maximal p-subgroup,
say ), of G by Lemma 2.12.22. Then @ is a Sylow p-subgroup of G, and hence by Sylow’s
second theorem @ = a~!Pa, for some a € G. Since P is a characteristic subgroup of G, we
have Q = a™'Pa = ¢,(P) = P, where ¢, is the inner automorphism of G defined by ¢,(b) =
a~tba, Vb € G. Therefore, z € P, Vz € S, and hence H := (.S) C P. Therefore, H is a p-group
by Lemma 2.12.21.

(iv) = (i): Let P and @ be Sylow p-subgroups of G. Since both P and () are p-subgroups of
G, all of their elements have order power of p. Then (P U Q) is a p-group by assumption (iv).
Since Sylow p-subgroups of G are maximal p-subgroups of G, we have P = (PUQ ) = Q. This
proves (i). O

Corollary 2.14.16. If G is a finite abelian group, then for every prime number p > 0, G has a unique
Sylow p-subgroup, known as the p-primary component of G.
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Proof. Let G be a finite abelian group of order n. If p t n, then the trivial subgroup {e} is the
unique Sylow p-subgroup of G. If p | n, then the result follows from Corollary 2.14.15. O

Exercise 2.14.17. Show that S4 has no normal subgroups of order 8 and 3.

Solution: If possible suppose that S4 has a normal subgroup, say H, of order 8. Then the quo-
tient group Ss/H is isomorphic to Z3z. Since the abelianization of S, is isomorphic to Z, by
Exercise 2.9.21, we get a surjective group homomorphism f : Zy — Zs by Theorem 2.9.19,
which is a contradiction. Therefore, S4 cannot have a normal subgroup of order 8.

If possible suppose that S, has a normal subgroup, say H, of order 3. Since H has only two
elements of order 3 and S, has more than 3 elements of order 3, there exists © € Sy \ H with
ord(z) = 3. Then the cyclic subgroup K := () of S, intersects H trivially, and hence HK is
a subgroup of S, of order |HK| = |H| - |K| = 9, which is not possible by Lagrange’s theorem
since 9 1 24. Therefore, S4 cannot have a normal subgroup of order 3. O

Example 2.14.18. Let G = S,. Then |G| = 4! = 24 = 23 - 3. If n,, denotes the number of Sylow
p-subgroups of G, then ny, = 1 + 2k, for some integer k& > 0, and ns | 3. Then ny = 1 or 3. Since
S4 cannot have a normal subgroup of order 8 by Exercise 2.14.17 we see that no = 3. Since
n3 = 1+ 3k, for some integer £ > 0 and n3 | 8, we have ng € {1,4}. Since S4 has no normal
subgroup of order 8 by Exercise 2.14.17, we have n3 = 4.

Exercise 2.14.19. Let p > 0 be a prime number. Let P be a non-trivial p-subgroup of .S,. Show
that [N, (P)| = p(p — 1).

Solution: Since |S,| = p!, the largest p-th power appearing in the prime factorization of |.S,| is
p. Since P is a non-trivial p-subgroup of S,, we see that |P| = p, and hence P is a Sylow p-
subgroup of S,. Since any two Sylow p-subgroups are conjugates by Sylow’s second theorem
(Theorem 2.14.11), and since the stabilizer of P is Ng,(P), we see that [S,, : Ng, (P)] = n,, the
number of Sylow p-subgroups of S,. Since any two distinct Sylow p-subgroups of S}, has order
p, they intersect trivially. Let Syl,(S,) be the set of all Sylow p-subgroups of S,,. Note that, any
non-identity element of P € Syl,(S,) has order p, and hence is a p-cycle in S,. Since there are
p — 1 number of non-identity elements in each P € Syl,(S,) and there are total (p — 1)! number
of distinct p-cycles in S, by Exercise 2.5.15, we conclude that n,(p — 1) = (p — 1)!. Therefore,
[Sp : Ns,(P)] =np = (p —2)!, and hence |Ng, (P)| = [S,|/np, = p(p — 1). O

2.15 Miscellaneous Exercises

Let G be a group.

Q1. Given a subset A C G, we define Ng(A) := {a € G : a~'Aa = A}. Show that
(i) N¢(A)is a subgroup of G.
(i) If H is a subgroup of G, show that H < Ng(H).

(iii) If H is a subgroup of G, show that N (H) is the largest subgroup of G in which H is
normal.

(iv) Show by an example that A need not be a subset of Ng(A).
Q2. Given a subset A of G, let Cg(A) :={a € G:aba™t =b, Vbe A}.

(i) Show that Cz(A) is a subgroup of G.
(i) If H is a subgroup of G, show that H < Cg(H) if and only if H is abelian.

Q3. If NV is a family of normal subgroups of G, show that () N is normalin G.
NeN
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Q4.

Q5.

Qeé.

Q7.

Q8.

Q.
Q1.

Q1.

Q12.

Q13.

Ql4.

QI5.

Qle.
Q17.

Q18.

If N is a normal subgroup of G, show that H N N is normal in H, for any subgroup H of
G.

Let NV be a finite subgroup of G. Suppose that N = (.S) and G = (T'), for some subsets .S
and 7" of G. Show that IV is normal in G if and only if tSt—1 C N,forallt € T.

Find all normal subgroups of the dihedral group Dg = (r,s : ord(r) = 4,0rd(s) = 2, sr =
r~1s), and identify the associated quotient groups.

Fix an integer n > 3, and let Dy, = (7,5 : ord(r) = n,ord(s) = 2,sr = r~'s) be the
dihedral group of degree n and order 2n.

(a) Show that

B {e}, if nis odd, and
Z(D2p) = { {e,r*}, ifn = 2kiseven.

(b) If £k € N divides n, show that (rk ) is a normal subgroup of D5, and the associated
quotient group Day, /( ) is isomorphic to Dayy.

Let G and H be groups.

(i) Show that {(a,ex) : @ € G} is a normal subgroup of G x H and the associated
quotient group is isomorphic to H.

(ii) If G is abelian, show that the diagonal A¢ := {(a,a) : a € G} of G is a normal
subgroup of G x G, and the associated quotient group isomorphic to G.

(iif) Show that the diagonal subgroup Ag, C S5 x S3 is not normal in S5 x S3.
Let H and K be subgroups of G with H < K. Show that [G: H] =[G : K][K : H].

Let G be a finite group. Let H and N be subgroups of G with N normal in G. If gcd(|H|, [G :
N]) = 1, show that H is a subgroup of N.

Let N be a normal subgroup of a finite group G. If gcd(|N|, [G : N]) = 1, show that N is
the unique subgroup of order |N| in G.

Let H be a normal subgroup of G. Given any subgroup K of GG, show that 4 N K is normal
in HK.

Show that Q has no proper subgroup of finite index. Deduce that Q/Z has no proper
subgroup of finite index.

Let H and K be subgroups of G with [G : H] = m < co and [G : K] = n < co. Show that
lem(m,n) < [G : HN K| < mn. Deduce that [G : HN K] = [G : H||G : K] whenever
ged(m,n) = 1.

Show that S, cannot have normal subgroups of orders 8 and 3.
Find the last two digits of 33"
Let H and K be subgroups of G. If H C Ng(K), then show that

(i) HK isasubgroup of G,
(i) K isnormalin HK,
(iii)) H N K isnormal in H, and
(iv) H/(HNK)> HK/K.

If H is a normal subgroup of G with [G : H| = p, a prime number, show that for any
subgroup K of G, either

(i) K isasubgroup of H, or
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Q19.

Q20.

Q21.

Q22.

Q23.
Q4.

Q25.

Q26.

Q27.

Q28.

Q29.

(i) G=HKand [K : HN K] = p.

Let H and K be normal subgroups of G such that G = HK. Show that G/(H N K) =
(G/H) x (G/K).

Let G be a finite group of order p"m, where p > 0 is a prime number, r,m € N and
ged(p,m) = 1. Let P be a subgroup of order p”. Let N be a normal subgroup of G of
order p°n, where gcd(p,n) = 1. Show that |[P N N| = p® and |PN/N| = p"—*. Conclude
that intersection of a Sylow p-subgroup of G with a normal subgroup N of G is a Sylow
p-subgroup of N.

A subgroup H of a finite group G is said to be a Hall subgroup of G if its index in G is
relatively prime to its order; i.e., if ged([G : H], |H|) = 1.

If H is a Hall subgroup of G and N is a normal subgroup of G, show that H N N is a Hall
subgroup of N and HN/N is a Hall subgroup of G/N.

A non-trivial abelian group G is said to be divisible if for each a € G and non-zero integer
n € Z \ {0}, there exists an element b € G such that b" = a; i.e., each element of G has a
n-th rootin G, for all n € Z \ {0}. Prove the following.

(i) Show that (Q, +) is a divisible group.

(ii) Show that any non-trivial divisible group is infinite.
(iii) Show by an example that subgroup of a divisible group need not be divisible.

(iv) If G and H are non-trivial abelian groups, show that G x H is divisible if and only if
both G and H are divisible.

(v) Show that quotient of a divisible group by a proper subgroup is divisible.
Find all generators and subgroups of Z4s.

Let G be a group. Given an element a € G, show that there is a unique group homomor-
phism f : Z — G such that f(1) = a.

Let G be a group. Let a € G be such that ™ = e, for some integer n > 0, show that there is
a unique group homomorphism ¢ : Z,, — G such that ¢([1]) = a.

Fix an integer n > 2. Given an integer k, let f; : Z,, — Z,, be the map defined by fi(z) =
¢ Ve,
(i) Show that fj, is a well-defined map.
(ii) Show that f;, € Aut(Z,,) if and only if ged(n, k) = 1.
(iii) Show that fi, = f; if and only if £ = k (mod n).
(iv) Show that every group automorphism of Z, is of the form f;, for some k € Z.
(v) Show that f o f¢ = fre, Vk, £ € Z.

(vi) Deduce that the map f : Z) — Aut(Z,) defined by f(k) = fix, Vk € Z)

s 18 an
isomorphism of ) := U,, onto the automorphism group Aut(Z,).

(vii) Conclude that Aut(Z,) is an abelian group of order ¢(n), where ¢ denotes the Euler
phi function.

Fix an integer n > 3. Show that the multiplicative group G := (Z/2"Z)* has two distinct
subgroups of order 2. Conclude that G is not cyclic.

Let G be a finite group of order n. Let k € N with gcd(n, k) = 1. Use Lagrange’s theorem
and Cauchy’s theorem to show that the map f : G — G defined by f(a) = a*, Va € G, is
surjective.

Let m,n > 2 be two integers. Find all group homomorphism f : Z,,, = Z,,.
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Q30.

Q31.

Q32.

Q33.

Q34.
Q35.

Q3e6.

Q37.
Q38.
Q39.

Q40.

Q41.

Q42.

Q43.

Q44.

Let G be a group. Show that there is a one-to-one correspondence between the set of
all group homomorphisms from Z,, into G with the set of all solutions of the equations
™ =eqinG.

Find the number of group homomorphisms from Z,, into Z,, x Zj.

Find the number of all group homomorphisms from Sz into Z,, x Z,,. (Hint: Use abelian-
ization of S3.)

Let G be a group and H an abelian subgroup of G. Show that the subgroup (H,Z(G))
is abelian. Give an example of a group G and an abelian subgroup H of G such that the
subgroup ( H,Cs(H)) is not abelian, where Cq(H) = {a € G : a='ha = h, Vh € H} is
the centralizer of H in G.

Show that the subgroup generated by any two distinct elements of order 2 in S; is 3.

Show that any finitely generated subgroup of (Q,+) is cyclic. Conclude that Q is not
finitely generated.

Show that the subgroup of (Q*, -) generated by the subset {1/p € Q% : p is a prime number}
is Q*, the multiplicative group of positive rational numbers.

Show that any group of order 4 is isomorphic to either Z4 or K,.
Show that any group of order 6 is isomorphic to either Zg or Ss.

Let p > 0 be a prime number, and let
G={zeC*:2"" =1, forsomen € NU{0}}.
Prove the following.
(i) G1isasubgroup of C*.
(ii) The map F}, : G — G given by z — 2?, is a surjective group homomorphism.
(iii) Find Ker(F,).
(iv) Show that G is isomorphic to a proper quotient group (i.e., quotient by a non-trivial

normal subgroup) of itself.

Let G be the additive group (R, +). Show that G is isomorphic to the product group G x G.
(Hint: Note that both R and R x R are Q-vector spaces). Show that this fails for G = (Z, +).

Let G be a finite group and let S(G) be the permutation group on G. Let 7 : G — S(G) be
the left reqular representation of G (i.e., 7 is the group homomorphism defined by sending
a € G to the permutation o, € S(G) thatsends b € G to ab € G).

(i) If a € G with ord(a) = n and |G| = mn, show that 7(a) is a product of m number of
n-cycles.

(ii) Deduce that 7(a) is an odd permutation if and only if ord(a) is even and |G|/ord(a)
is odd.

(iii) If 7(G) contains an odd permutation, show that G has a subgroup of index 2.

If G is a finite group of order 2n, where n is odd, show that G has a subgroup of index 2.
(Hint: Use Cauchy’s theorem and the previous exercise).

Let G be finite group of order n, where n is not a prime number. If G has a subgroup of
order r, for each positive integer r that divides n, show that G is not a simple group.

Let G be a group. A subgroup H of G is said to be a characteristic subgroup of G if f(H) C H,
for all f € Aut(G). Prove the following,.
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(i) Characteristic subgroups are normal.

(if) If H is the unique subgroup of a given finite order in G, then H is a characteristic
subgroup of G.

(iif) If K is a characteristic subgroup of H and H is normal in G, show that K is normal
in G.

(Q45. Compute the conjugacy class and the stabilizer of o := (; 3 g’ Z; ? g Z) € Sr.

Q46. Let H be a subgroup of G with finite index [G : H| = n. Show that there is a normal
subgroup K of G with K C H and [G : K] < nl.

(Q47. Show that every non-abelian group of order 6 has a non-normal subgroup of order 2.
(Hint: Produce an injective group homomorphism G — S3). Use this to show that, upto
isomorphism, there are only two groups of order 6, namely S3 and Zg.

(Q48. Let P be a Sylow p-subgroup of a finite group G, and let H be a subgroup of G. Prove the
following statements.

(i) aPa~!' N H is a Sylow p-subgroup of H, for some a € G.
(ii) If Pis normal in G then H N P is the unique Sylow p-subgroup of H.

Q49. Let G be a finite group of order pg, where p, g are prime numbers withp < gand p { (¢—1).
Show that G is abelian. If p < g and p { (¢ — 1), what can you say about G?

Q50. Let p > 0 be a prime number. Let P be a non-trivial p-subgroup of S,. Show that
[Ns, (P)| = p(p —1).

216 Applications of Sylow’s Theorems

Lemma 2.16.1. Let G be a group of order pn, where p is a prime number and p > n. Then G has a
normal subgroup of order p, and hence is not simple.

Proof. By Cauchy’s theorem (Theorem 2.12.14) G has a subgroup, say H, of order p. Let K be a
subgroup of G of order p. If H # K, then H N K = {e}, and hence the cardinality of the subset
HK C(Gis

H|- K] _ »
HK = = =
HE| = g —v > =16l
which is a contradiction. Therefore, H is the unique subgroup of G of order p, and hence it is
normal in G. This completes the proof. O

Exercise 2.16.2. Let G be a finite group and let H be a proper subgroup of G of index [G : H] =
n. If |G| does not divide n!, show that H contains a non-trivial normal subgroup of G, and
hence G is not simple.

Proof. Let Ly = {aH : a € G} be the set of all left cosets of H in G. Note that |Ly| =[G : H] =
n. Then the left G-action
c:GxLy— Ly, (9,aH) — gaH,

on Ly induces a group homomorphism
fU G — S(‘CH) = S7L7 g G(ga_)a

with Ker(f,) C H (see Corollary 2.11.17). Since |G/Ker(f,)| divides |S,| = n! by Lagrange’s
theorem (Theorem 2.7.5) and |G| does not divide n! by assumption, we have Ker(f,) # {e}.
Since H is a proper subgroup of G containing Ker( f,), it follows that G is not simple. O
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Exercise 2.16.3. Show that any group of order 12 is not simple. (Hint: Use Exercise 2.16.2 with
H e Syl,(G)).

Lemma 2.16.4. Let G be a group of order p*q, where p and q are distinct prime numbers. Then G is
not simple.

Proof. Let P € Syl,(G) and Q € Syl (G). Suppose that p > ¢. Since n;, | ¢ and n;, = kp + 1, for
some integer k£ > 0, we must have n, = 1. So P is normal in G.

Suppose that p < g. If ny = 1, then @) is normal in G. Assume that n, > 1. Thenn, = kg+1,
for some integer k > 1. Since n, | p* and n, > 1, either n, = p or p?. If n, = p, then
p = n, = 1+ kg > g, which contradicts out assumption that p < ¢q. So n, = p?. Then
p? = ny = 1 + kq implies that ¢ divides p> — 1 = (p+ 1)(p — 1). Since p < ¢,s0 ¢t (p — 1), and
hence ¢ | (p + 1). Since p < ¢, this forces p = 2 and ¢ = 3. Then |G| = p?>q = 12, and so G is not
simple by Exercise 2.16.3. O

Exercise 2.16.5. Let G be a group of order 56. Show that G is not simple.

Proof. Given that |G| = 56 = 23 x 7. Let ny = |Syl,(G)| and ny = | Syl;(G)|. Then by Sylow’s
third theorem (Theorem 2.14.12), ny | 7 and ny = 1+ 7m, for some integer m > 0, and n7 | 8 and
ny = 147k, for some integer k > 0. Thenny, € {1,7} and n;y € {1,8}. If ny = 1 orif ny = 1, then
G has a normal Sylow 2-subgroup or a normal Sylow 7-subgroup, and hence G is not simple.
Assume that ng # 1 and ny # 1. Let Syl,(G) = {A;, ..., A7} and Syl,(G) = {By, ..., Bs}. Since
|B;| = 7, a prime number, all B; are cyclic groups and each of them have 6 elements of order
7. So G contains 6 x 8 = 48 elements of order 7. Now each A, has 8 elements. Since B; N B; is
a subgroup of both B; and B;, by Lagrange’s theorem we have |B; N B;| < 4, for i # j. Then
B; U B, contains at least (8 +8) —4 = 12 elements that has order different from 7. So G contains
at least 48 4+ 12 = 60 elements, which contradicts the fact that |G| = 56. Therefore, we must
have either ny = 1 or ny = 1. This completes the proof. O

Applying the above mentioned results to groups of composite order < 60 we record them
into the following Table 2.16.5.1.

Thus, we have the following.
Theorem 2.16.6. Let G be a finite group of order n, where 2 < n < 60 and n is not a prime number.
Then G is not simple.

In Theorem 2.13.12 we have shown that A5 is a simple group of order 60. Now we show
that, upto isomorphism, As; is the only simple group of order 60. We break this problem into a
set of small exercises.

Exercise 2.16.7. Let H be a subgroup of G with [G : H] = 2.

(i) Show thata? € H, Va € G.
(ii) Show that H contains all elements of G of odd order.
Proof. (i) Since H is normal in G by Proposition 2.8.7, the quotient group G/ H has order 2, and

so given any element a € G, it follows from Corollary 2.7.7 that «?’H = (aH)*> = H in G/H,
and hence a? € H.

(ii) Let a € G with ord(a) = 2n+ 1, for some integer n > 0. Then in the quotient group G/H
we have H = a*""'H = (a®?H)"aH = H - aH = aH by part (i), and hence a € H. O

Exercise 2.16.8. Fix an integer n > 3. If H is a subgroup of S,, with [S,, : H] = 2, then H = A,,.
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|G| Reference |G| Reference
4 =22 Corollary 2.1224 & || 6 =3 x 2 Lemma 2.16.1
Lemma 2.13.3
8 =23 Corollary 2.12.11 & || 9 = 32 Corollary 2.12.24 &
Lemma 2.13.3 Lemma 2.13.3
10=5x2 | Lemma 2.16.1 12 = 22 x 3 | Exercise 2.16.3
14=7x2 Lemma 2.16.1 15=5x3 Lemma 2.16.1
16 = 2% Corollary 2.12.11 18 =2x9 | Exercise 2.11.21
20=5x4 Lemma 2.16.1 21=7x3 Lemma 2.16.1
22=11x 2 | Lemma 2.16.1 24 = 23 x 3 | Exercise 2.16.2 with
H € Syl,(G).
pPEp Corollary 2.12.24 & || 26 =13 x 2 | Lemma 2.16.1
Lemma 2.13.3
27 = 3° Corollary 2.12.11 & || 28 =7 x 4 Lemma 2.16.1
Lemma 2.13.3
30 =2 x 15 | Exercise 2.11.21 32=2° Corollary 2.12.11 &
Lemma 2.13.3
33=11x3 | Lemma 2.16.1 34 =17 x 2 | Lemma 2.16.1
35=7x5H Lemma 2.16.1 36 = 32 x 4 | Exercise 2.16.2
38 =19 x 2 | Lemma 2.16.1 39 =13 x3 | Lemma 2.16.1
40=5x%x38 ns = 1 & Corollary || 42=7x6 Lemma 2.16.1
2.14.15
44 =11 x4 | Lemma 2.16.1 45 =32 x5 | Lemma 2.16.4
46 =23 x 2 | Lemma 2.16.1 48 = 2% x 3 | Exercise 2.16.2 with
H € Syl,(G)
49 =72 Corollary 2.12.24 & || 50 = 2 x 25 | Exercise 2.11.21
Lemma 2.13.3
51 =17 x 3 | Lemma 2.16.1 52 =13 x 4 | Lemma 2.16.1
54 = 2 x 27 | Exercise 2.11.21 55 =11 x 5 | Lemma 2.16.1
56 Exercise 2.16.5 57 =19 x 3 | Lemma 2.16.1
58 =29 x 2 | Lemma 2.16.1

TABLE 2.16.5.1: Non-simple groups of order < 60
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Proof. Clearly the index of A,, in S, is 2. Let H be a subgroup of S,, with [S,, : H|] = 2. Then
H is normal in S,, by Proposition 2.8.7. Let ¢ € S,, be any 3-cycle. Since ord(c) = 3, an odd
number, we have o € H by Exercise 2.16.7. Since A,, is generated by 3-cycles in S,, by Exercise
2.5.34, we have A,, C H. Since both A,, and H have the same cardinality, namely n!/2, we
conclude that H = A,,. O

Exercise 2.16.9. Let G be a finite simple group. Let p > 0 be a prime number such that p | |G|.
If the number of all Sylow p-subgroups of G is n > 2, show that G is isomorphic to a subgroup
of S,,.

Proof. Let X, be the set of all Sylow p-subgroups of . Since conjugate of a Sylow p-subgroup
of G is again a Sylow p-subgroup of G (see Exercise 2.14.8), the conjugation action of G on X,
gives rise to a group homomorphism ¢ : G — S(X,) = S, defined by sending g € G to the
permutation

pg: Xp = Xp, P gPg~t.

If Ker(¢) = G, then o, =Idx,, Vg € G,and so givenany P € X, wehave P = gPg~!, Vg € G.
Since any two Sylow p-subgroups are conjugates, we must have |X,| = 1, which contradicts
our assumption that | X,| = n > 2. Since Ker(¢y) is a normal subgroup of G and G is simple, we
must have Ker(¢) = {e}. Therefore, ¢ : G — S, is an injective group homomorphism. Hence
the result follows. O

Exercise 2.16.10. Show that A5 has a subgroup isomorphic to A4.

Proof. Define amap ¢ : Ay — S5 by sending o € A4 to p(0) = 7, where

_ o), if 1<i<4,
“(1)_{ i, if i=5.

Clearly ¢ € S5. Moreover, from decomposition of ¢ into product of transpositions it follows
immediately that o is even, and hence in As. It is easy to check that ¢ is an injective group
homomorphism, and hence ¢ identifies A4 as a subgroup of As. O

Exercise 2.16.11. Let G be a simple group of order 60. Show that G has a subgroup of order 12.

Proof. Since |G| = 60 = 22 x 3 x 5, by Sylow’s third theorem (Theorem 2.14.12) ns | 15 and
ng = 1+ 2k, for some integer k¥ > 0. Then ne € {1,3,5,15}. Since G is simple, ny # 1 by
Corollary 2.14.15. Since |G| = 60 > 3, it follows from Exercise 2.16.9 that ny # 3. If ny = 5,
then again by Exercise 2.16.9 G is isomorphic to a subgroup of S5. Since the only index 2
subgroup of Sy is A5, we have G = Aj;. Then G has a subgroup of order 12 by Exercise 2.16.10.

Suppose that ne = 15. Let { P, ..., P15} be the set of all Sylow 2-subgroups of G. Note that
each P; has order 4. Since |G| = 60 = 2% x 3 x 5, by Sylow’s third theorem (Theorem 2.14.12)
we have ns | 12 and ns = 1 + 5k, for some integer & > 0. Then ns € {1,6}. Since G is simple,
ns # 1,and so ns = 6. Let {@Q1,. .., Qs } be the set of all Sylow 5-subgroups of G. Since each Q;
has order 5 and Q; N Q; = {e}, for i # j, we see that G has (5 — 1) x 6 = 24 elements of order 5.

15

If BN B; = {e}, forall i # j, then |J P; contains (4 — 1) x 15 + 1 = 46 elements of

i=1

order different from 5. Thus we get at least 24 + 46 = 70 elements in G which contradicts our
assumption that |G| = 60. Therefore, there exists at least a pair of distinct elements i,j € I15
such that P, N P; # {e}. Then |P; N P;| = 2 by Lagrange’s theorem, and hence P; N P;, being
an index 2 subgroup of both P; and P;, is normal in both P; and P; (see Proposition 2.8.7).
Therefore, P;, P; C Ng(P; N P;), and so P,P; C N(P; N P;). Therefore, |P; N Pj| > |P,P;| =
4x4 — 8. Since N(P; N P;) is a subgroup of G, by Lagrange’s theorem (Theorem 2.7.5) we see
that |V (P; N P;)| € {12,20,30,60}. Since G is simple and P; N P; is a non-trivial proper normal

subgroup of G, |N(P; N P;)| # 60. Since G is simple and any index 2 subgroup of G is normal
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in G (see Proposition 2.8.7), |N(P, N P;)| # 30. Again |[N(P; N P;)| # 20 by Exercise 2.16.2.
Therefore, |N(P; N P;)| = 12, as required. O

Theorem 2.16.12. Any simple group of order 60 is isomorphic to As.

Proof. Let G be a simple group of order 60. Then G has a subgroup, say H, of order 12 by
Exercise 2.16.11. Since [G : H] = 5, the natural left G-action on the set X = {aH : a € G} gives
rise to a group homomorphism ¢ : G — S(X) = S5 with Ker(¢) € H. Since H is a proper
subgroup of G and G is simple, we must have Ker(y) = {e}. Since |G| = 60, it follows that G

is isomorphic to an index 2 subgroup of S5, and hence is isomorphic to A5 by Exercise 2.16.8.
This completes the proof. O

2.16.1 Quaternion group Qs

Consider the set Qs := {1,-1,4,—1,j, —j, k, —k}, together with the binary operation - :
Qs x Qs — Qs given by the following law:

la=a-1=a,VaceQs.
(-1)-(-1)=1,and (-1)-a=a-(—1)=—a, Va € Qs,
ivi=j-j=k k=—1,
i-j=k, j-i=—k,
Jk:Zv k]:_la
kei=3j, i-k=—j.
Verify that the set Qs together with the binary operation as defined above forms a group,
known as the quaternion group.
Exercise 2.16.13. Show that the quaternion group @5 has following presentations:
() Qs = (i,j,k,0:i> =342 =k?=ijk=( and (* =e¢).
(i) Qs =(zy:at =122 =y y lay =a7").
Exercise 2.16.14. (i) Show that Qs is a non-abelian group.
(if) Find all subgroups of () and draw the associated lattice diagram (see Definition 2.4.13).
(iii) Show that all subgroups of Qs are normal.

Exercise 2.16.15. Consider the presentation of Qs = (z,y : 2* = 1,22 = y?,y oy = z71).
Show that the map ¢ : Qs — GL2(C) defined on the generators of Qg by

o= (Vo' _gm) and = (3 )

extends to an injective group homomorphism that identifies s as a subgroup of GLy(C).

Exercise 2.16.16. Show that the subgroup of SL,(Z3) generated by the matrices

0 -1 1 1
A:(l 0) and B—(1 _1)

is isomorphic to the quaternion group Qs.

Exercise 2.16.17. Show that the subgroup of SLy(Zs) generated by

2 0 0 1
A:(O 2) and B:(1 0)



98 Chapter 2. Group Theory

is isomorphic to the quaternion group Qs.
*Exercise 2.16.18. (i) Show that G := SLy(Zs) is a finite group of order 120.

(if) Show that the subgroup H of G generated by

2 0 0 1
A_<O _2) and B_<—1 O)

is isomorphic to the quaternion group Qs.

(iii) Let C' := (% _21) € SLy(Zs). Show that C' € N (H) and the subgroup K = (A, B,C)

of G has index 5 in G.

(iv) Show that the conjugation action of G on the set of all left cosets Lx ¢ = {aK : a € G}
is transitive, and the associated group homomorphism ¢ : G — S(Lx) = S5 has kernel
Ker(p) = Z(SLa(Zs)).

(v) Use Corollary 2.11.14 to conclude that this gives rise to an injective group homomorphism
@ : PSLQ(Z5) — 55.

(vi) Show that the image of ¢ has index 2 in S5, and hence PSL3(Zs) is isomorphic to As.

2.16.2 Projective spaces”

Let k be a field. Given an integer n > 1, consider the (n + 1)-dimensional k-vector space
V = k"1, On the set of all non-zero vectors V' \ {0}, we define a relation ~ as follows: given
v,w € V \ {0}, we define

v~w if 3N € k\ {0} suchthatw = Av.

Verify that ~ is an equivalence relation on V' \ {0}. We denote by P"(k) = (V' \ {0})/ ~, the
set of all ~-equivalence classes of non-zero vectors in V, and call it the projective n-space over
k. Note that an element of P"(k) is an one-dimensional k-linear subspace (a straight-line in
V = k" passing through the origin), i.e.,

Ly ={w: ek} CV,

for some v € V' \ {0}. Given non-zero vectors v,w € V \ {0}, we have ¢, = ¢, if and only if
w = v, for some A € k\ {0}.

Exercise 2.16.19. (i) Let I, be a finite field of order ¢ = p™, where p > 0 is a prime number
and n € N. Show that the projective line P!(F,) has ¢ + 1 elements. Find the cardinality
of the projective n-space P"(F,), for all n € N.

(ii) Let & be a field. Show that the natural map o : GL,,11(k) x P*(k) — P"(k) given by
(A, ly) =Lay, ¥V (A, L) € GL,y1(k) x P*(k),
is well-defined and is a left GL,, ;1 (k)-action on P (k).
(iii) Show that o is not faithful (c.f. Definition 2.11.7).
(iv) Show that o gives rise to PGL,, 41 (k)-action, and hence a PSL,, 11 (k)-action, on P" (k).

*Exercise 2.16.20. (i) Show that the natural PSLy(Zs)-action on the projective line P!(Zs)
gives rise to a group homomorphism f : SLo(Z5) — S.

(ii) Show that the image of f is isomorphic to Ss.
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(iii) Show that f(A) € S5 is even, for all A € PSLy(Zs).
(iv) Conclude that PSLy(Z5) = As, and hence is simple.

2.17 Structure of Finitely Generated Abelian Groups

Definition 2.17.1. Let A be an abelian group. A subset S C A is said to be a basis for A if

(i) S generates 4,ie., (S)= Aand
(ii) S is Z-linearly independent, i.e., given any finitely many elements s;,...,s;, € S and
integers n1,...,ny € Z, the condition nys1+- - - +ngs, = 0 implies thatn; = --- =ny = 0.

An abelian group A is said to be free if it admits a basis.

For example, Z&Z is a free abelian group with a basis {(1,0), (0, 1)}. Note that {(1, —1), (0,1)}
is also a basis for Z @ Z. Thus, basis for a free abelian group is not unique in general.

Exercise 2.17.2. (i) Show that a non-trivial finite abelian group cannot be not free.
(ii) Show that Q/Z is not free.

(iii) If an abelian group A contains an element a # 0 with finite order, then A is not free.

The next theorem shows that given a set S, up to a unique isomorphism, there is a unique
free abelian group with a basis S.
Theorem 2.17.3. Given a set S, there exists a pair (Fop(S), fs), where Fop(S) is an abelian group and

fs S = Fa(S) is an injective map satisfying the following universal property:

e given any abelian group A and a set map g : S — A, there exists a unique group homomorphism
g: Fan(S) = Asuchthat go fg = g.

Moreover, if (A, g) is any pair consisting of an abelian group A and an injective map g : S — A
such that (A, g) satisfies the above universal property, then there exists a unique isomorphism of groups
g: Fapn(S) = Asuchthat go fs = g.

Proof. Uniqueness is easy to see. We only prove existence. Let
Fap(S) :={¢: 5 = Z:¢(s) =0, forall but finitely many elements of S} .

Clearly F,;,(S) is a non-empty set since the zero function 0 : S — Z is inside F,,(S). Given
@, € Fop(9), define
e+v:S =L, s p(s)+U(s).

Clearly ¢ + ¢ = ¥ + ¢ and it vanishes at all but finitely many points of S. Therefore, ¢ + ¢ €
F.,(S). The above defined binary operation on F,},(S) makes it an abelian group. Define a
map

(2.17.4) fs:8 = Fap(S)
by sending = € S to the function f, : S — Z defined by

1, if s=ux,

fx(s):{(): if s#x.
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Clearly fs is an injective map, which identifies S as a subset of Fy;,(.S). Note that given s € S
andn € Z, n - s € F,,(S) is the function that sends = € S to the integer

n, if s=u,

(n's)(m):{ 0, if s#ua

Given ¢ € F,,(5), since ¢(s) # 0, for finitely many s € S, we can write it as
(2.17.5) Y= Z o(s) - s.
sES

Therefore, S generates F,;,(S). If p = Y ms - s, where m, € Z and all but finitely many m, are
SES

S (ms —p(s))s = 0

seS

zero, then the finite sum

is the zero map from .S into Z, and hence evaluating it at each s € S we see that ¢(s) = ms,
for all s € S. Therefore, the above expression for ¢ in (2.17.5) is unique. In particular, S is Z-
linearly independent, and hence is a basis for F,;,(S). Therefore, Fy,(S) is a free abelian group
with a basis S. The elements of S are called free generators of F,;,(.S). Given an abelian group A

and asetmap g : S — A, we defineamap g : Fap(S) = Abysending o = > ¢(s) - s € Fa(S)
seS
to > w(s)g(s) € A. Clearly g is a group homomorphism and that g o fs = g, as required. [
seS

Corollary 2.17.6. (i) Given a set map ¢ : S — T, there exists a unique group homomorphism
¢ Fan(S) = Fau(T) such that the following diagram commutes.

S ¢ T
fsl lfT
J1e
Fop(8) ————— Fap(T)

(i1) Iqu:S%Tandw:T%Uaresetmaps,thenqmziog.

(iii) If ¢ is injective (resp., surjective), so is the homomorphism ¢.

Proof. (i) Apply universal property of Fy;,(.S) for the test object (Fo(T'), fr o ¢).
(ii) Follows from uniqueness statement in part (i).
(iii) Note that ¢ : S — T is injective (resp., surjective) if and only if there exists a map

Y :T — S (resp., n : T — S) such that ¢ o ¢ = Idg (resp., ¢ o n = Idr). Then the result follows
from part (ii). O

Lemma 2.17.7. Any abelian group A is isomorphic to a quotient of a free abelian group F := F,,(A).
Moreover, if A is finitely generated, then we may choose F to be a free abelian group of finite rank.

Proof. The first assertion follows from Theorem 2.17.3 with S := Aand g : S — A to be the
identity map A — A. To prove the second part, suppose that A is generated by a finite subset,
say S = {z1,...,z,} C A, and let F,,(S) be the free abelian group generated by S. Then by
universal property of F,i,(S) (see Theorem 2.17.3), there exists a group homomorphism

p: Fap(S) — A

such that ¢ o fg = g, where 1g : S — A is the inclusion of S into A and fg : S — F,p(5)
is the natural inclusion map defined in (2.17.4). Since (S) = A, given z € A, we have x =
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miz1 + -+ + mpx,, for some integers mq,...,m,. Then ¢ being a group homomorphism
satisfying ¢ o fg¢ = 13, we have

o(mafs(@1) + -+ mnfs(xn)) = mip(fs(z1)) + -+ mnp(fs(zn))
=Mmix1+- -+ MpTy = .

Therefore, ¢ is surjective, as required. This completes the proof. O

Proposition 2.17.8. Let A be a free abelian group with a basis {z1,...,x,}. Then A= P 7.
i=1

Proof. Foreachi € {1,...,n},lete; € @ Z be the n-tuple of integers whose i-th coordinate is 1
i=1

and all other coordinates are 0. Then the map f : @ Z — A defined by
i=1

flay,...,a,) = Zaixi, V(a1,...,an) € EDZ,
i=1 i=1

is a group homomorphism. Since {z1,...,z,} generates A, that f is surjective, and since
{z1,...,2,} is Z-linearly independent, the map f is injective. Therefore, f is an isomorphism
of groups. O

Exercise 2.17.9. Use the universal property of direct sum (Theorem 2.10.21) to extend the proof
of the above proposition to show that an abelian group A is free if and only if A is isomorphic

to @ Z, for some index set I.
il

Unlike a vector space, in a free abelian group A a Z-linearly independent subset S C A may
not be extendable to a basis for A, and a generating subset of A many not contain any basis for
A. For example, in the free abelian group A = Z, the subset S = {3} is Z-linearly independent
but cannot be extended to a basis for Z, while the subset T' = {2, 3} generates Z but does not
contains a basis for Z. However, we can say something about the cardinality.

Proposition 2.17.10. Let A be a free abelian group with a finite basis B = {x1,...,z,}. If S C A
generates A, then |S| > n. In particular, a finitely generated free abelian group admits a finite basis.

Proof. In view of Proposition 2.17.8, we may assume that A = @ Z. Let (a1,...,a,) € Q" be

i=1
given. Let a; = 2, where p;, q; € Z, q; > 0 and ged(pi, ¢;) = 1. Let d = ged(qu, ..., o). Then
(deu,...,day,) € Z". Since S generates Z™, for each s € S, there exists m, € Z such that all but
finitely many m, are 0 and

(daq,...,day) = sts,

ses
m
= (a1,...,qn) =Y —s.

ses
Thus, S is a generating subset of the n-dimensional Q-vector space Q", and hence |S| > n. O
Proposition 2.17.11. Let A be a free abelian group with a basis B = {x1, ...,z }. If T is any basis for
A, then |T| = n.

Proof. Choose a subset T}, := {z1,..., &y} C T consisting of m elements, and let B = F,,(T}»).
Then B is a free abelian group with a basis 7,, = {z1,...,2}, and hence B = Z™. Since
{z1,...,2,} is a basis for A, we have A = Z". Since B is a subgroup of A, we can identify Z™
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as a subgroup of Z". Fixing a prime number p > 0, and going modulo the subgroup pZ, we see
that

" = |EPz/z| < |Pz/vz| =p"
i=1 i=1

Therefore, m < n. This leads to a contradiction unless |T| < n. Therefore, T is finite and
|T'| < n. Then interchanging the roles of 7' and B, the same argument shows that n < |T|, and
hence |T'| = n as required. O

Corollary 2.17.12. Any two bases of a finitely generated free abelian group A has the same number of
elements, and that number (= cardinality of a basis for A) is called the rank or betti number of A.

Lemma 2.17.13. Let f : A — A’ be a surjective homomorphism of abelian groups, and let B :=
Ker(f). If A’ is free, then there exists a subgroup C of A such that f| o+ € — Alis an isomorphism of
groupsand A= B P C.

Proof. Fix abasis B’ := {«] : i € I} for A", Since f is surjective, for each ¢ € I we can choose an
element z; € Asuch that f(z;) = 2}. Let C be the subgroup of A generated by B := {x; : i € I'}.
If > n;z; = 0, where n; € Z and all but finitely many n;’s are 0, then applying f on it we see
i€l
that )" n,2; = 0. Thenn; = 0, Vi € I, since B’ = {2} : i € I} is Z-linearly independent.
i€l
Therefore, B = {z; : i € I} is a basis for C, and hence C is a free abelian group. Since
f] 5 ¢ B — B'is bijective, the map f |C : C — A’ is an isomorphism of groups by Corollary
217.6. Let x € C' N B be given. Then z = ) n;z;, with n; € Z and all but finitely many
i€l
n;'s are 0. Since x € B = Ker(f), we have 0 = f(z) = > n;z;, and hencen, = 0, Vi € I,
iel
since {z; : ¢ € I} is Z-linearly independent. Therefore, © = 0, and hence B N C = {0}. Given
any z € A, we have f(z) = > n;z}, for some n; € Z and all but finitely many n;’s are 0.

iel
Then z := Y n;z; € C and that f(z — z) = f(x) — f(2) = 0. Therefore, x — z = b, for some
iel
b e Ker(f) = B,andso z =b+x € B+ C. Therefore, A = B + C with BN C = {0}, and hence
A=B@C. O

Exercise 2.17.14. Let A be a finitely generated abelian group. Show that any subgroup of A is
finitely generated. (Hint: Use induction on the number of generators.)

Lemma 2.17.15. Let A be a finitely generated free abelian group and let B be a subgroup of A. Then B
is finitely generated and free. Moreover, rank(B) < rank(A).

Proof. Since A is a finitely generated free abelian group, by Proposition 2.17.10 it admits a finite
basis, say B := {z1,...,z,}. Then

A=Zx1® - ® Lz,

by Proposition 2.17.8. We now proceed by induction on n. For n = 1, A is a cyclic group
isomorphic to Z, and so any subgroup B of A is isomorphic to nZ, for some n € NU {0}, and
hence B is again a free abelian group of rank 1 = rank(A) in this case. Suppose that n > 1 and
the result holds for any free abelian group of rank < n — 1. Consider the projection map

fA=Zx1 B & ZLx, — Lz
onto the first factor given by
flmizy + -+ mpxy) = myzy.

Clearly f is a group homomorphism. Let By := Ker(f]| »)- Then By is a subgroup of the free
abelian group
(22, ap) =L22 & - @ Lan
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of rank n — 1, and hence is a free abelian group of rank at most n — 1 by induction hypothesis.
Since f(B) is a subgroup of Zx,, it is a free abelian group of rank < 1. Then by Lemma 2.17.13
applied to the homomorphism

flg:B— f(B)

gives a subgroup Cy of B such that f| o € — f(B) is an isomorphism of groups (and hence

C is free abelian group of rank < 1) and that B = Ker(f|B) P C1 = B1 P Cy. Thus B is a free
abelian group of rank < (n — 1) + 1 = rank(A). This completes the proof. O

Definition 2.17.16. Let A be an abelian group. An element a € A is said to be a torsion element
if na = 0, for some n € N (i.e., if ord(a) is finite).

Given an abelian group 4, the subset
Ator :={a € A:na=0, forsome n € N}

consisting of all torsion elements of A forms a subgroup of A (verify!), called the torsion sub-
group of A. We say that A is a torsion abelian group (resp., torsion-free abelian group) if A = Ayor
(resp., Ator = {0}). For example, any finite abelian group is a torsion group. The quotient
group Q/Z is an infinite torsion abelian group. The cyclic group Z is torsion free.

Exercise 2.17.17. Show that any free abelian group is torsion free.

Exercise 2.17.18. Given any abelian group A, show that A, is a torsion abelian group and
A/ Aio, is torsion free.

Proposition 2.17.19. A finitely generated torsion free abelian group is free of finite rank.

Proof. Let A be a finitely generated torsion free abelian group. Assume that A # {0}. Let S be
a finite subset of A that generates it as an abelian group. Let B be a maximal Z-linearly inde-
pendent subset of S. Since A is torsion free, By # 0, say B = {z1,...,z,}. Then the subgroup
B = (x1,...,x,) of A generated by B is a free abelian group of rank n, and is isomorphic to
@ Z. Since B is a maximal Z-linearly independent subset of S, given y € S there exists integers
i=1

m,my, ..., My, not all zeros simultaneously, such that

my — (mix1 + -+ + mpxy,) = 0.

Note that m # 0, since for otherwise m; = --- = m, = 0 by Z-linear independence of B.
Therefore, my € B = (z1,...,x,). Since S is finite, we can find an integer m > 0 such that
my € B, forally € S. Since A = (S), wehave mA := {ma : a € A} C B. Then A being abelian,
the map

p:A— B, v~ mz,

is a group homomorphism. Since A is torsion free, Ker(¢) = {0}. Therefore, ¢ is injective, and
hence A is isomorphic to a subgroup of the free abelian group B of finite rank, and hence A is
free of finite rank by Lemma 2.17.15. This completes the proof. O

Exercise 2.17.20. Show that any finitely generated torsion abelian group is finite.
Theorem 2.17.21. Let A be a finitely generated abelian group. Then Ao, is finite and A /A is free of
finite rank. Moreover, there exists a free subgroup B of A of finite rank such that A = Ao @ B.

Proof. Since A, is a finitely generated (by Exercise 2.17.14) torsion abelian group (by Exercise
2.17.18), it is finite by Exercise 2.17.20. Since A is finitely generated, the quotient group A/A,
is finitely generated and torsion free (see Exercise 2.17.18), and hence is free of finite rank by
Proposition 2.17.19. Then by Lemma 2.17.13 applied to the natural quotient map

m: A= AfAior
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produces a subgroup B of A such that 7|, : B — A/A is an isomorphism of groups and
A =Ker(m) @ B = Aior @ B. Since A/ A, is free, so is B. This completes the proof. O

The next theorem, called the structure theorem or the fundamental theorem of finite abelian
groups, completely classify all finite abelian groups of a given order.

Theorem 2.17.22 (Structure theorem of finite abelian groups). Let G be a finite abelian group of
order n > 1. Let n = pi'* - - - pp* be the unique factorization of n into product of distinct prime powers
with py > -+ > py, > 0. Then we have the following.

(i) Foreachi € {1,...,k}, thereis a unique subgroup A, of G order p;* such that G = A1 ®- - - Ay,

(ii) For each A € {Ay,..., A}, with |A| = p®, we have a unique decreasing sequence of integers
81> fa >+ > By > 1 (depending on «) satisfying 1 + - - - + B¢ = o such that

AZTs @ - ® Lo,

Proof. Since G is abelian, any subgroup of G is normal. Then by Sylow’s second theorem (Theo-

rem 2.14.11) G has a unique Sylow p;-subgroup, say A;, foreachi € {1,...,k}. Since |A;| = p}",

for all ¢, and p1, . . ., pi, are distinct prime numbers, we have A; N ([] 4;) = {0}, for all ¢. Since
J#i

k

| IT Ai| = n = |G|, wehave G = A; - -- Aj. Therefore, G = A1 & - -- & Ay, by Theorem 2.10.18.
i=1

This proves the first part.

We prove part (ii) by induction on |[A| = p". The case when A is cyclic, is trivial. So we
assume that A is not cyclic. Let a; € A be of maximal order, i.e.,

ord(aq) > ord(a), Va € A.

Let Ay be the cyclic subgroup of A generated by a, and let ord(a;) = p™, for some positive
integer 11 < n. Letm : A — A/A; be the quotient group homomorphism. Now we need the
following lemma.

Lemma 2.17.23. With the above notations, given an element w € A/A; with ord(w) = p", for some
integer r > 1, there exists a € A such that ord(a) = ord(w) and w(a) = win A/A;.

Proof. Let b € A be such that 7(b) = win A/A;. Since ord(w) = p", we have p"b € A; = (a1 ).
Then p"b = ma,, for some m € Z. Clearly ord(w) < ord(b) by Proposition 2.6.5 (iii). Therefore,
if m = 0 then the condition p"b = 0 forces that ord(b) = p”, and we are done. Assume that
m # 0. Then m = pFu, for some integers k > 0 and u # 0 with ged(u, p) = 1. Then ua; is also a
generator for A; = (a1 ), and ord(ua;) = p™. Then we have

(2.17.24) p"b=ma; = (pFu)a; = p*(uay).
Since ord(uai) = p"', we may assume that & < ;. Then
ord(p"b) = ord(p*(uar)) = p" ¥,
and hence ord(b) = p"*™1~*. Since a € A is of maximal order p™, we have
ord(b) = pr+i—k < pr,
and hence r + r; — k < 71, which gives r < k. Since p*b = p” - p*~" using (2.17.24) we have

(2.17.25) p'b = pF(uar) = p'c,
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where ¢ := p*""ua; € (a;) = A;. Seta := b — c € A. Since A is abelian, we have
(2.17.26) pPla=pb—pc=0

by (2.17.25), and hence a—b = —c = p*~"ua; € A;, which givesa = b = w in A/A;, as required.

Since ord(a) = ord(b) = p” and ord(a) > ord(a), it follows from (2.17.26) that ord(a) = p". O

Now we return to the proof of the main theorem. Since A/A; is a finite abelian p-group
with |A/A1] < |A], by induction of order we have

AJA T2 A1 @ @ As,

for some cyclic subgroups As, ..., A; of A/A; of orders p™, ..., p"*, respectively. By rearrang-
ing the factors, if required, we may assume thatry > --- > r, > 1. Let A; = (@; ), where a,; € A;
is of order p™ by Lemma, for each i =2,...,s. Weshowthat A= A; @ Ao & --- © As.

Givenzx € A, letT € A/A; be theimage of zin A/A;. Then there exists integers mo, ..., ms >
0 such that
T =maaz + -+ Msas

in A/JA; 2 Ay @ --- @ A,. Then x — (magag + - - +mgas) € Ay = (ay ), and so there exists an
integer m; > 0 such that
r — (moaz + -+ msas) = myay,
and hence
T =mya; +moas + - +mgas € A + Ay +--- + A,
Therefore, A < A1 +As+---+ A, andhence A = A1 +Ax+---+A,. Toshow A= A, d---DA,,
it remains to show that
A0 (JTA4) =1{0}, Vie{1,... s}
J#i
Suppose that mya; + - - - +msas = 0, for some integers my, . .., m,. Since ord(a;) = p", we may
assume that 0 < m; < p", for all i. Then in the quotient group A/A; we have
(2.17.27) Motz + - +mgas =0

in the quotient group A/A; = Ay @ --- ® A,. Since ord(@;) = ord(a;), V i, we have m; =
0,Vi=2,...,s. Then mia; =0, and hence m; = 0 (since ord(a;) = p™ > m; > 0). Therefore,
every element of A can be uniquely written sum of elements from Ay, ..., A;, and hence A =
A1 A @ - @ As.

It remains to prove uniqueness of the decomposition. We prove this by induction on |A| =
p". Suppose that
AZZLpr @+ @ Lprs Z Lpmi O -+ ® Lpma,

for some decreasing sequence of positive integers

TIZTQZ"'ZTSZ:L

and m; >mg > - >my > 1.

Note that pA := {pa : a € A} is a finite abelian p-subgroup of A and we have a surjective group
homomorphism ¢ : A — pA defined by ¢(a) = pa, V a € A whose kernel

Ker(p) ={a € A:pa =0} = A(p)



106 Chapter 2. Group Theory

is non-trivial by Cauchy’s theorem. Therefore, by first isomorphism theorem pA = A/Ker(yp),
and hence [pA| < |A|. Then we have

pA = Zprlfl DD Zp'rsfl = mel—l D---D mek—l.

So by induction hypothesis r; — 1 = m; — 1, and hence r; = m,, for those i for which r; > 2 and
m; > 2. So the two decreasing sequences of integers

(prla"' 7p7‘s) and (pml,"'apmk)
can differ only in their last components which can be equal to p! = p. These corresponds
to factors of type (p,p,--- ,p) occurring, say u-times in the first sequence and v-times in the
second sequence. Then comparing the orders, we see that p™+ " . pt = prit+mm . p¥ and
hence u = v, as required. This completes the proof. O

Remark 2.17.28. The integers p” described in the above Theorem 2.17.22 (ii) are called the
elementary divisors of G, and the description of G given in part (i) and (ii) of the above theorem
is called the elementary divisor decomposition of G. The decomposition of G into direct sum of
its Sylow subgroups in part (i) is also known as primary decomposition theorem for finite abelian
groups.

Theorem 2.17.29 (Fundamental theorem for finitely generated abelian groups). Let A be a
finitely generated abelian group. Then

(i) AXZY DLy, ®Lpy, ® -+ ® Ly, for some integers r,ny,na, . .., ns satisfying the following
conditions:

(@) r>0andn; >2, Vie{l,..., s}, and
(b) Nj4+1 | ni,fOI’llllZ. € {1,...,571}.

(i) Uniqueness: The above decomposition for A in (i) is unique in the sense that if

AgZ@t@Zml @ZmQ@"'@ZnLkv

for some integers t,my, ma, ..., my, satisfying the conditions (a) and (b) above, then t = r,s = k
and m; =n;, foralli=1,...,s.
The number r is called the free rank or the Betti number of G, and the sequence of integers (n1,nz, ..., Ns)

is called the invariant factors of G.

Proof. Using Theorem 2.17.21 we have A = Z%" & A;,,, for some uniquely determined integer
r > 0. Therefore, it remains to deal with the finite part A;,, using Theorem 2.17.22. Assume
that A = Ai,:. Suppose that |[A] = n and n has unique prime factorization n = pi"* ---p}*,

for some distinct primes p, ..., pr and positive integers oy, . .., . Now we proceed with the
following steps to obtain the integers ny, ..., n, (called invariant factors) satisfying conditions
(a) and (b) in part (i).

Step 1: Group all elementary divisors which are powers of the same prime together. In this
way, we get k lists of integers, one for each p;, Vj=1,..., k.

Step 2: In each of these k lists arrange the integers in decreasing order.

Step 3: In each of these k lists suppose that the longest (i.e., the one with the most terms)
consists of ¢ integers. Make each of the k lists of length ¢ by appending an appropriate
number of 1’s at the end of each list.

Step 4: For each i € {1,...,t}, the i-th invariant factor n; is obtained by taking the product of
the i-th integer in each of the ¢ ordered lists.
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Then the above steps ensures that the numbers n1,...,n, are in decreasing order and the di-
visibility relation n;11 | n; holds, foralli =1, ..., s — 1. This completes the proof. O

Corollary 2.17.30. Let A be an abelian group of order n € N. If n is a square free integer (i.e., there is
no prime number p > 0 such that p? | n), then G is cyclic.

Proof. Let n > 1 be a square-free integer. Then n = p; ---p,, where p; < --- < p, are prime
numbers. Then by fundamental theorem of finite abelian groups, wehave A = Z,,, ®--- ©Z,,,
where n; > --- > ny > 2 are integers satisfying n,41 | n;, foralli = 1,...,k — 1. Since
n = ni---n, and p; | n, then p; | n,,, for some j; € {1,...,k}, and hence p; | n;. Then
n = py - - - pg divides ny, and hence n = ny. Therefore, k = 1 and so A = Z,,. O]

Exercise 2.17.31. Show that any group of order 255 is cyclic.

Solution: Let G be a group of order 255 = 3 x 5 x 17. Let n;7 be the number of Sylow 17-
subgroups of G. Then ni; = 1 + 17k, for some integer k > 0, and ny7 | 3 x 5. This forces
ny7 = 1. Then G has a unique Sylow 17-subgroup P of order 17. Then P is cyclic by Corollary
2.7.9,and it is normal in G by Sylow’s second theorem (Theorem 2.14.11). Then the conjugation
action of G on P induces a group homomorphism

f:G = Aut(P),
which sends a € G to f, € Aut(P), where
f(a)(b) = aba™*, Vb€ P.

Then we have
Ker(f) ={a € G:aba"! =b, Vb€ P} = Cg(P).

Now by first isomorphism theorem G/Ker(f) is isomorphic to a subgroup of Aut(P). Since
P is cyclic group of prime order 17, we have | Aut(P)| = 16. Since | Aut(G)| is coprime to
|G| = 3 x 5 x 17, it follows from the Lagrange’s theorem that f(G) is the trivial subgroup of
Aut(P). Then Cg(P) = Ker(f) = G, and hence P C Z(G). Since G/P has order 3 x 5, it is
cyclic. Then the quotient group G/Z(G) = (G/P)/(Z(G)/P) is cyclic, and hence G is abelian
by Exercise 2.8.22. Since G is abelian and |G| is a square free integer, it follows from Corollary
2.17.30 that G is cyclic. O

Exercise 2.17.32. Show that any group of order 455 is cyclic.
Exercise 2.17.33. Show that SL2(Z3) has four Sylow 3-subgroups.
Exercise 2.17.34. Show that the subgroup of SLy(Z3) generated by

0 -1 1 1
A= (1 0 ) and B = (1 _1)
is the unique Sylow 2-subgroup of SLo(Z3).

Answer: Let G := SLy(Z3). Note that |G| = 24 = 2% x 3. If P is a Sylow 2-subgroup of G, then
|P| = 8. By direct computation, we see that

A2 = —127 A3 =-A # IQ and A4 = IQ,
B?=—-I,, B3=—-B#1, and B* =15,
AB = —BA.
Therefore, ord(A) = ord(B) = 4 and AB # BA. So (A, B) = {+I5,+A,+B,+AB} is a sub-

group of G = SLy(Z3) of order 8, and hence is a Sylow 2-subgroup. We now show that (A, B)
is the only Sylow 2-subgroup of G. If ny denotes the number of Sylow 2-subgroup of G, then
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ng = 1 + 2k, for some integer k¥ > 0, and that ns | 3. Then ny € {1,3}. Suppose on the con-
trary that ny # 1. Let X = {P,, P», P3} be the set of all Sylow 2-subgroups of G. Then by
Sylow’s second theorem G = SL3(Z3) acts on X by conjugation, which gives rise to a group
homomorphism

f G = SL2(Z3) — S3.

Then by first isomorphism theorem, G/Ker(f) = f(G) < S, and hence |Ker(f)| > % = 4.
Since a € Ker(f) if and only if aPa~! = P, for all P € Syl,(SLa(Z3)), we conclude that

Ker(f) = Ng(P1) N Ng(Ps) N Ne(Ps).

Since ny = 3 by assumption, we have [G : Ng(P;)] = ne = 3, which gives |[Ng(P;)| = |G]/3 =
8 = |P;|, foralli = 1,2,3. Since P; C N¢(P;), we conclude that Ng(P;) = P, foralli = 1,2, 3.
Therefore, Ker(f) = PiN PN Ps, and so | PL N P,NPs| > 4. Since for i # j, wehave |P,NP;| <4
by Lagrange’s theorem, and since P, N P, NP3 C P; N P;, wehave P, NP, NP3 = P; N P;.
Therefore, we have

PN P|=|PiNPyN P3| =4, Vi#]j.

Thus we have 3 x (8 — 4) 4+ 4 = 16 elements of SL,(Z3) whose orders are powers of 2. Again
note that SLy(Z3) has 4 Sylow 3-subgroups by Exercise 2.17.33. So there are 4 x (3 — 1) = 8
elements of order 3 in SLy(Zs). Thus, SLo(Zs) has 16 4+ 8 = 24 = | SLo(Z3)| elements of orders
either power of 2 or 3. However, picking an element, say A of order 3 (c.f. Cauchy’s theorem)
from SLy(Z3) we see that the matrix —A = (—I3)A = A(—1I) € SLy(Z3), and it has order 6.
This is a contradiction. Therefore, we must have ny, = 1. O

Exercise 2.17.35. Show that Z(SLy(Z3)) = {I2, —I2}, and deduce that SLo(Z3)/{*+I2} = A4.

Proof. Itis easy to see that Z(SLa(Z3)) = {M2 : A € Zz and \? = 1} = {I5, —I5}. We now prove
the second part. Note that V' := Z3 @ Zj is a 2-dimensional vector space over the finite field Zs.
Let P! (Z3) be the set of all 1-dimensional Z3-linear subspaces of V. A typical element of P*(Z;)
is given by

by :={ v : € Zs},

for some v € V' \ {0}. Given v,w € V' \ {0}, note that ¢, = ¢, if and only if w = v, for some
32-1 _

non-zero scalar A € Zs. Therefore, [P*(Z3)| = 5=t = 4. If £, = £y, for some v,w € V \ {0},

then given any A € SLy(Z3), we have {4, = {4,,. Therefore, the natural SLy(Z3)-action on V'
given by sending (A, v) € SLy(Z3) x V to Av € V gives rise to a well-defined map

0 : SLy(Z3) x PY(Z3) — P (Z3), (A, L)+ Lay,

which is a group action, verified easily. Since |P'(Zs3)| = 4, the SLo(Z3)-action o on P'(Zj3)
induces a group homomorphism
fa : SLQ(Zg) — Sy,

whose kernel is
Ker(f) = {A € SLy(Z3) : Lay = £y, Vv € V\{0}} = {12, — 12} = Z(SLy(Z3)).

Then by first isomorphism theorem SLjy(Zs3)/{I2, —I2} is isomorphic to a subgroup, say 7', of
Sa. Since |SLa(Z3)/Z(SLa(Z3))| = 24/2 = 12, we have [Sy : T] = 2, and hence T' = A4 by
Exercise 2.16.8. This completes the proof. O

2.18 Additional Exercises

Q1. Find all abelian groups of order 63 that contains an element of order 21.

Q2. Show that any abelian group of order 231 is cyclic.
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Q3.
Q4.
Q5.
Q6.

Q7.

Q8.
Qo.

Ql0.
Ql1.

Q12.
Q13.

Ql4.
QI5.

Qle.

Q17.

Qis.
Q19.
Q20.

Q21.

Q22.

Q23.

Q4.

Find all abelian groups of order 72 that contains exactly three subgroups of order 2.
Show that any abelian group of order not divisible by p?, for any prime p, is cyclic.
Show that an abelian group is cyclic if and only if all of its Sylow subgroups are cyclic.

Let A be a finitely generated abelian group such that ord(a) = 2, for all a € A\ {0}. Show
that |A| = 2", for some n € N.

Let B be a finitely generated subgroup of an abelian group A. If A/B is finitely generated,
show that A is finitely generated.

Show that any group of order 35 and 133 are cyclic.

Let G be a group of order 5 x 7 x 19. Show that G has a unique subgroup of order 5.
Conclude that G is cyclic.

Show that any group of order 100 having a unique Sylow 2-subgroup is abelian.
Let G be a simple group of order 168.

(i) Show that G has eight Sylow 7-subgroups.
(i) If H is a Sylow 7-subgroup of G, show that |[Ng(H)| = 21.
(iii) Show that G has no subgroups of order 14.

Find all groups of order 14.

Let G be a group of order p?q?, where p and ¢ are prime numbers. Show that G is not
simple.

Show that any group of orders 255 and 455 are cyclic.

Let H be a subgroup of G. If Q) is a Sylow p-subgroup of H, show that gQg~! is a Sylow
p-subgroup of gHg!, forall g € G.

Find all Sylow 2-subgroups and Sylow 3-subgroups of Sy, A4, S3 x S3 and the dihedral
group D, of order 12.

Let H be a subgroup of G with [G : H] a prime number. If C¢(H) = G, show that G is
abelian.

Give examples of A, B € SLy(Z3) with ord(A) = 3 and ord(B) = 6.
Show that SLy(Z3) has more than one Sylow 3-subgroups. Find all of them.
Show that the subgroup of SLs(Zs3) generated by

0 -1 1 1
A_<1 O> and B—(1 _1>

is the unique Sylow 2-subgroup of SLy(Z3).

Show that the Z(SL3(Zs3)) = {£12}, and deduce that SLy(Zs3) /{+12} = A4. (Hint: Use facts
about groups of order 12.)

Let G be a group of order 312. Show that G has a normal Sylow p-subgroup for some
prime p dividing 312.

Let G be a group of order n = p;paps, where py,ps and ps are distinct prime numbers.
Show that G has a normal Sylow p;-subgroup, for some ¢ € {1, 2, 3}.

Show that a group of order 132 is not simple.
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Q25. Let G be a group of order 231.

(i) Show that Z(G) contains a Sylow 11-subgroup of G.
(if) Show that a Sylow 7-subgroup of G is normal.

Q26. Show that a group G of order 105 contains a unique Sylow 3-subgroup if and only if G is
abelian.

Q27. Let G be a group of order 315 having a unique Sylow 3-subgroup P. Show that P C Z(G).
Deduce that G is abelian.

Q28. Given any two groups G and H, we denote by Hom(G, H) the set of all group homomor-
phisms from G into H.
(i) Find the number of elements of the set Hom(Z x Z, Z,,), for all n € N.

(i) Let G be an abelian groups of order n. Let r € N. Are the sets Hom(Z®",Z,) and
Hom(Z®", G) have the same cardinality?

(iii) Find the number of group homomorphisms from Z x Z to S3. How many of them
are surjective?

Q29. Given any three groups G, H and K, show that there is a natural bijective map

Hom(G, H) x Hom(G, K) — Hom(G, H x K).

2.19 Free Group

Theorem 2.19.1 (Free group generated by a set). Given aset S, there exists a pair (F(S),js), where
F(S)isagroupandjs : S — F(S) is an injective map satisfying the following universal property:

* Given any pair (G, g), where G is a group and g : S — G is a set map, there exists a unique
group homomorphism g : F(S) — G such that gojs = g. In other words, the following diagram

commuites.
S
’Si g

The pair (F(S),js) is unique in the sense that if (F, f) is any pair consisting of a group F and an
injective map f : S — F satisfying the universal property mentioned above, then there exists a unique
isomorphism of groups f : F\(S) — F such that f ojg = f.

Proof. Uniqueness of the pair (F(S),jg), if it exists, follows from its universal property. For
existence, see [DF04] or [Lan02, Chapter 1].

We now establish a relation between the free group F(S) and the free abelian group F,y(S)
generated by S.

Corollary 2.19.2 (Abelianization of a free group). Given a set S, the abelianization of the free group
F'(S) is precisely the free abelian group Fyy,(S) generated by S.

Proof. Consider the pair (F,,(S), fs), where F,,(S) is the free abelian group generated by S
and fg : S — F,p(9) is the natural inclusion map of S into F,,(S) as in Theorem 2.17.3.
Then by the universal property of (F'(S),js) (see Theorem 2.19.1), there exists a unique group

homomorphism fg : F(S) = Fa,(S) such that fsojs = fs. Now given any abelian group 7" and
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a group homomorphism f : F(S) — T, applying the universal property of the pair (F,,(S), fs)
to the test object (T,¢ := f ojg), we get a unique group homomorphism ¢ : F,,(S) — T such
that ¢ o fg = f 0js. Then we have the following diagram

whose outer square and the upper left triangle commutes. Now for the set map Yofs:S—T
we have two group homomorphisms f,v o fs : F(S) — T such that

fois=1dofs
and (JOE)OJ'S:{/;OJ[&

Then by uniqueness part in universal property in Theorem 2.19.1, we must have bofs=Ff.

Then it follows from Theorem 2.9.19 that (F,,(5), fs) is the abelianization of the free group
F(S). This completes the proof. O

Theorem 2.19.3 (Free Product of Groups). Let {G, : « € A} bea family of groups. Then there is a
pair (F, {jo }aen ), consisting of a group F and a family of group monomorphisms

{ja : Ga - F}aeA
satisfying the following universal property:

o Given any group T and a family of group homomorphisms {f, : Go — T}aen, there exists a
unique group homomorphism f : F' — T such that f ojo = fo, Vo € A.

The pair (F, {ta }acn) is uniquely determined by the universal property, and is called the free product
of the family of groups {G }aen, and F' is denoted by ZAGQ. For a finite index set A = {1,...,n},

we denote it by G * - - - * G,

Corollary 2.19.4. Given a family of abelian groups {A,, : a € A}, we have a natural surjective group
homomorphism @ : *AA“ — P A, suchthat i, = Poj,, Va €A
ae

aEA
Ao
N
o
x A A
pen”” BEPA ’

Proof. Follows from the universal property of the free product of groups (Theorem 2.19.3). O

Theorem 2.19.5 (Amalgamated free product). Let A be a group. Given an indexed family of injec-
tive group homomorphisms {c; : A — G, }ic1, there exists a pair

(G, (fi)ier),
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where G is a group and f; : G; — G is a group homomorphism, for each i € I, such that

(i) fioa; = fjoay, foralli,j€ I, and
(ii) the pair (G, (fi)icr) satisfies the following universal property: Given any group T and a family of

group homomorphisms {@; : G; — T }ier satisfying o; o p; = o o pj, Vi,j € I, there exists a
unique group homomorphism ¢ : G — T such that p o f; = ¢;, Vi € L.

NCT
DN

The pair (G, (fi)ier) is uniquely determined by its universal property, and is called the free product of
the family of groups (G;);c; amalgamated along {«; : A — G }icr, and is denoted by x4 G;. For

i€l
a finite index set I = {1,...,n}, we denote it by Gy *4 - - - x4 Gp.
2.20 Solvable Groups

Let G be a group.
Definition 2.20.1. A finite sequence of subgroups of G

G=GyDG,D--DG,={e}

is said to be a subnormal series of G if G, 41 is a normal subgroup of G;, foreachi =0,1,...,n—1.
Furthermore, if G; /G, is abelian, for alli = 0,1,...,n — 1, then it is called a solvable series of

G, and in this case G is called solvable.
Example 2.20.2. (i) Any abelian group is solvable.

(if) Ss is solvable since it has a solvable series given by
S3 D ((1 2 3)) D {e}.
(iii) Sy is solvable since it has a solvable series given by

Sa 2 {e, (1.2)(3 4),(1 3)(2 4),(1 4)(2 3)} D {e, (1 2)(3 4)} O {e}.

Lemma 2.20.3. Let H be a subgroup of a group G. Then [G,G] C H if and only if H is normal in G
and G/ H is abelian.

Proof. Suppose that H is normal in G with G/H abelian. Let 7y : G — G/H be the quotient
group homomorphism. Then by the universal property of the abelianiazation 7 : G = Ga, =
G/|G,G] of G, there exists a unique group homomorphism f : G/|G,G] — G/H such that
fom=my.
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Then 7y ([G,G]) = f(7([G,G])) = eq/u, and hence [G, G] C Ker(ry) = H.

Conversely, suppose that [G,G] C H. Leth € H and g € G be given. Since ghg~'h™' €
[G,G] C H, we have ghg! = (ghg~'h~')h € H. Therefore, H is normal in G. Since
(ab)(ba)™! = aba='b~! € [G,G] C H, for all a,b € G, we have (aH)(bH) = abH = baH =
(bH)(aH) in G/H, and hence G/ H is abelian. O

Definition 2.20.4. Let G be a group. Define G(!) = [G,G] and for an integer k& > 1, define
G*D = [G*) GF)]. Then G¥ is a subgroup of G, called the k-th derived subgroup of G.

Theorem 2.20.5. Let G be a group. Then G is solvable if and only if G**) = {e}, for some k € N.

Proof. Suppose that G(™ = {e}, for some n € N. Since G**1) is a normal subgroup of G*) and
the quotient group G*) /G(**1) is abelian by Lemma 2.20.3, the sequence of subgroups

GHGM 5a® 5. 5 agn = {e}
is a solvable series of GG, and so G is solvable.
Conversely, suppose that
G=GyDG1 D DGy ={e}

is a solvable series of G. Since G;; is normal in G; with G, /G, abelian, [G;, G;] C G,11 by
Lemma 2.20.3. Since GV = [G,G] C G4, we have

G® =[GW,GW] C [G1,G1] C Go.
Proceeding inductively, we have G(™) C G,, = {e}, and hence G(™) = {e}. O

Proposition 2.20.6. Let H be a subgroup of a group G.

(i) If G is solvable, so is H.
(ii) If H is normal in G, and both H and G/ H are solvable, then G is solvable.
Proof. Suppose that G is solvable. Then G(™) = {e}, for some n € N. Since H™) C G™, it

follows from Theorem 2.20.5 that H is solvable. Since G = {¢} C H, we have (G/H)™ =
{ec/m}- Therefore, G/H is solvable.

Conversely, suppose that H is normal in G, and both H and G/ H are solvable. Then H*) =
{e} and (G/H)®) = {eq/u}, for some k,¢ € N. Then G') C H and so G+ € H®) = {e},
and so GU+F) = {¢}. Therefore, G is solvable. O

Lemma 2.20.7. Let n > 5. Then S contains all 3-cycles, for all k € N.

Proof. Let H be a subgroup of S,, that contains all 3-cycles of S,,. Consider a 3-cycle o = (a b ¢)
in S,,. Since n > 5, there exists d, f € I, \ {a,b,c} withd # f.Leta=(a b d)and 8 = (a ¢ f).
Since o, 8 € H and that

afa”' ™t =(a b d)(ac f)ladb)la fc)=(abec),

we see that (a b ¢) € [H,H] = HY. Proceeding inductively, we see that 5% contains all
3-cycles of S,,. This completes the proof. O

Corollary 2.20.8. S,, is not solvable, for all n. > 3.

Proof. Follows from Lemma 2.20.7 and Theorem 2.20.5. O
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Corollary 2.20.9. A,, is not solvable for n > 5.

Proof. Since S,,/A,, is abelian and hence solvable, it follows from Proposition 2.20.6 and Corol-
lary 2.20.8 that A,, is not solvable for n > 5. O

2.21 Semi-direct product

Let H and K be groups. We say that K acts on H by automorphisms if there is a group
homomorphism f : K — Aut(H), where Aut(H) is the group of all automorphisms of H. To
simplify the notation, we denote by f; the automorphism f(k) € Aut(H).

On the Cartesian product H x K of H with K, we define a binary operation by setting
(2.21.1) (h1,k1) - (ha, k2) := (ha fr, (h2), k1kz), ¥ (h1,k1), (he, ko) € H X K.

Note that if f is the trivial homomorphism, then fi(h) = h, Vh € H,k € K, and in that case
the above binary operation become the component-wise binary operation of the direct product
group H x K. Given (h1, k1), (ha, k2), (hs, k3) € H x K, we have

((h1,k1)(h2, k2)) (hs, k3) = (ha fx, (h2), k1k2)(hs, k3)

= (h1 fr, (h2) feiks (h3), (k1ko)k3)

= (h1fx, (h2) fr, (fry (R3)), k1 (k2ks))
= (h1fr, (hafr,(h3)), k1(k2ks))

= (h1, k1) (hafr, (h3), kaks)

= (h1, k1) ((h2, k2)(hs, k3)) -

Therefore, the binary operation on H x K defined in (2.21.1) is associative. Note that given
(h,k) € H x K, we have

(h,k)(eH,eK) = (hfk(eH),keK) = (h@H,k) = (h,k’),
and (e, ex)(h k) = (eq fer (h),exk) = (h, k),

where ey € H and ex € K are the neutral elements of H and K, respectively. Finally, given
(h,k) € H x K, we have

(hy k) (fum2 (1), k71) = (hfu(frmr (B71)), KET)
h(kafk DY), ex)

ex)

D‘

Ji—r(h™ )fk 1(h), k™ k)

fre-1 (B h),ex)

fr—1(en), ex)

€H, €K )-

Therefore, (h,k)™" = (fr-:(h™'), k™), V (h,k) € H x K. Therefore, the binary operation

(2.21.1) on H x K makes it a group, called the semidirect product of H with K along f, and is
denoted by H x; K or simply by H x K, if there is no confusion about f.

(hf
= (
= (hh
= (e, )
and (fr-1(h™),k71)(h, k) = (
= (
= (
= (
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