
A note on Bondal-Orlov’s reconstruction theorem

Arjun Paul†

ABSTRACT. Let X be a smooth projective irreducible finite type scheme defined over
a field k, which is not necessarily algebraically closed. Denote by ωX the dualizing
sheaf on X . In their famous 2001 paper [BO01], Bondal and Orlov showed that X can
be reconstructed from its bounded derived category Db(X) of coherent sheaves on
it whenever either ωX or its dual is ample. In this expository article, we explain the
proof of the reconstruction theorem due to Bondal and Orlov. We follow [Huy06].

1. INTRODUCTION

Derived category and triangulated category are extensively studied in the litera-
ture. They play crucial roles in modern algebraic geometry and mathematical physics.
In fact, statements of may beautiful results of geometry and mathematical physics,
like mirror symmetry, are almost impossible to express properly without the lan-
guages of derived category and triangulated category.

A famous theorem of Gabriel says that two smooth projective k-varieties X and
Y are isomorphic if and only if there is an equivalence of categories Coh(X) with
Coh(Y ). For a smooth projective k-variety X , we denote by Db(X) the bounded
derived category of coherent sheaves on X . The category Db(X) is triangulated, and
contains much more (cohomological) information aboutX than the category Coh(X).
In [Muk81], Mukai established an equivalence of categories Db(A) ' Db(Ǎ), where
A is an abelian variety and Ǎ its dual abelian variety. In particular, the categories
Coh(A) and Coh(Ǎ) are not equivalent. Therefore, equivalence between bounded
derived category of coherent sheaves fails to ensure isomorphism of varieties, in
general. Therefore, one can ask when can we expect an isomorphism of varieties
from an equivalence of their bounded derived categories of coherent sheaves?
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In their famous paper [BO01], Bondal and Orlov shows how to reconstruct a
smooth projective variety X from Db(X) when ωX or its dual is ample, where ωX
is the dualizing sheaf on X . More precisely,

Theorem 1.0.1 (Bondal–Orlov). LetX be a smooth projective variety over k with canonical
line bundle ωX . Assume that ωX (resp., ω∨X) is ample. Let Y be any smooth projective variety
over k. If there is an exact equivalence F : Db(X)

∼−→ Db(Y ), then X ∼= Y as k-varieties.
In particular, ωY (resp., ω∨Y ) is ample.

The main idea behind the proof is to “cohomologically” characterize closed points,
invertible sheaves and Zariski topology of a smooth projective k-variety, and for this,
the main technical tool for us is the Serre functor (− ⊗ ωX)[dimk(X)] on Db(X) (c.f.
Definition 2.2.1). Then F defines a bijection between the set of closed points of X
with that of Y , and sends ωiX to ωiY , for all i ∈ Z. Then one use these to recover the
Zariski topology on Y from that of X using amplensee of ωX or its dual, and finally
establish an isomorphism of k-schemes from X onto Y .

2. PRELIMINARIES FROM DERIVED CATEGORY

2.1. Derived category. Let A be an abelian category. For example, A = Coh(X), the
category of coherent sheaves on X . Denote by Kom(A) the category of complexes of
A. its objects are of the form

E• : · · · → Ei−1 di−1
E−→ Ei diE−→ Ei+1 → · · · ,

where Ei ∈ A and diE ◦di−1E = 0, for all i ∈ Z. Such a complex E• is said to be bounded
if Ei = 0, for |i| � 0. Denote by Komb(A) the full subcategory of Kom(A), whose
objects are bounded complexes. Note that, both Kom(A) and Komb(A) are abelian.
The i-th cohomology of E• ∈ Kom(A) is the object defined by

Hi(E•) :=
Ker(diE)

image(di−1E )
∈ A.

Given two such objects E•, F • ∈ Kom(A), a morphism f : E• → F • in Kom(A) is
given by the following commutative diagram.

E•

f
��

: · · · // Ei−1

f i−1

��

di−1
E // Ei

f i

��

diE // Ei+1

f i+1

��

// · · ·

F • : · · · // F i−1 di−1
F // F i

diF // F i+1 // · · ·
A morphism of complexes f : E• → F • is said to be a quasi-isomorphism if the induced
morphism of cohomologies

(2.1.1) Hi(f) : Hi(E•) −→ Hi(F •)
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is an isomorphism in A, for all i. Denote by D(A) the derived category of A; its ob-
jects are the same as the objects of Kom(A), but the morphisms in D(A) are obtained
by inverting all quasi-isomorphisms. To illustrate it little more, given any two ob-
jects E•, F • ∈ D(A), a morphism f : E• → F • in D(A) is given by a diagram (also
called a roof) of the form

(2.1.2) G•

qis

ϕ}}

ψ

!!
E• F •,

where G• is an object of D(A) and ϕ is a quasi-isomorphism of complexes. In the
derived category D(A), we convert all quasi-isomorphisms to isomorphisms. Thus,
inDb(A), we may think of the above roof as ψ◦ϕ−1 : E• → F •. Similarly, considering
only bounded complexes in A, we get a full subcategory Db(A) of D(A), called the
bounded derived category of A. Both the categories D(A) and Db(A) admits a nat-
ural shift functor given by sending E• to the complex E•[1], whose i-th term is Ei+1,
for all i. The categories D(A) and Db(A) are triangulated, and the shift functor is an
exact equivalence of categories. We refer the readers to [Huy06] for more details.

2.2. Serre functor. Let k be a field. Let A be a k-linear additive category.

Definition 2.2.1. A Serre functor on A is a k-linear equivalence of categories

S : A −→ A

such that for any two objects A,B ∈ A, there is a natural k-linear isomorphism

ηA,B : Hom(A,B) −→ Hom(B, S(A))∗,

which is functorial in both A and B. We write the induced k-bilinear pairing as

Hom(B, S(A))×Hom(A,B) −→ k , (f, g) 7−→ 〈f |g〉 .

Lemma 2.2.2. Let A and B be k-linear additive categories with finite dimensional Hom’s.
If A and B are endowed with Serre functors SA and SB, respectively, then any k-linear
equivalence F : A −→ B commutes with Serre functors (i.e., there is an isomorphism of
functors F ◦ SA ∼= SB ◦ F ).

Proof. Since F is fully faithful, for any A,B ∈ Awe have a functorial isomorphism

Hom(A, SA(B)) ∼= Hom(F (A), F (SA(B))) and Hom(B,A) ∼= Hom(F (B), F (A)).

By definition of Serre functor, we have the following functorial (in both variables)
isomorphisms

Hom(A, SA(B)) ∼= Hom(B,A)∗ and Hom(F (B), F (A)) ∼= Hom(F (A), SB(F (B)))∗.
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These gives a functorial isomorphism

Hom(F (A), F (SA(B)))
'−→ Hom(F (A), SB(F (B))).

Since F is essentially surjective, any object in B is isomorphic to an object of the
form F (A), for some A ∈ A. Hence the result follows from the above functorial
isomorphism. �

Proposition 2.2.3. Let A be a k-linear additive category. Then any two Serre functors on
A are isomorphic.

Proof. Follows from definition of Serre functor and Yoneda lemma. �

Let X be a smooth projective k-variety of dimension n ≥ 1. Note that, for any
locally free coherent sheaf E on X , the functor

−⊗ E : Coh(X) −→ Coh(X) , F 7−→ F ⊗ E

is exact. Let ωX be the dualizing sheaf on X . Let D∗(X) = D∗(Coh(X)), where
∗ ∈ {∅, b}. Consider the composite functor

(2.2.4) SX : D∗(X) D∗(X) D∗(X),
ωX⊗− [n]

where [n] : D∗(X) → D∗(X) is the n-th shift functor given by sending a complex E•

to E•[n]. Since both the functors ωX ⊗ − and [n] are exact, their composite functor
SX := (ωX ⊗−)[n] is exact.

Theorem 2.2.5 (Grothendieck-Serre duality). Let X be a smooth projective variety over
a field k. Then the functor SX : Db(X) −→ Db(X) as defined in (2.2.4) is a Serre functor in
the sense of Definition 2.2.1.

Proof. Given any two objects E•, F • ∈ Db(X), we need to give an isomorphism of
k-vector spaces

(2.2.6) ηE•,F • : HomDb(X)(E
•, F •)

'−→ HomDb(X)(F
•, SX(E•))∗

which is functorial in both E• and F •. For E•, F • ∈ Db(X) we define

ExtiDb(X)(E
•, F •) := Hi

(
RHom•(E•, F •)

)
, ∀ i ,

and we have a natural isomorphism

(2.2.7) HomDb(X)(E
•, F •[i]) = Exti(E•, F •), ∀ i .

Since X is smooth and projective, choosing a resolution by complex of locally free
sheaves onX , we may assume thatEi is locally free, for all i. Then we have functorial
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isomorphisms

Homi(E•, F •) =
⊕
j∈Z

Hom(Ej, F i+j) =
⊕
j∈Z

H0(X,Hom(Ej, F i+j))

∼=
⊕
j∈Z

Extn(F i+j, Ej ⊗ ωX)∗, by classical Serre duality theorem [Har77].

∼=
⊕
j∈Z

HomDb(X)(F
i+j, Ej ⊗ ωX [n])∗, by (2.2.7).

∼= Homn−i(F •, E• ⊗ ωX)∗.

Hence the theorem follows. �

3. BONDAL–ORLOV’S RECONSTRUCTION THEOREM

Let k be a field, not necessarily algebraically closed. By a k-variety we mean an
integral separated finite type k-scheme. Let X be a smooth projective k-variety. De-
note by Coh(X) the category of coherent sheaves of OX-modules on X . This is an
abelian category. Denote by Db(X) the bounded derived category of Coh(X).

3.1. Equality of dimensions. A rank one invertible sheaf L on X is said to have
finite order if Lr ∼= OX for some integer r > 0. The smallest positive integer r such
that Lr ∼= OX is called the order of L. If Lr 6∼= OX , ∀ r > 0, we say that L has
infinite order. For any x ∈ X , let k(x) := OX,x/mx be the residue field at x. For any
closed point x ∈ X , we can consider k(x) as a coherent sheaf on X supported at x
by taking its push-forward along the closed embedding ιx : Spec(k(x)) ↪→ X . This is
the skyscraper sheaf supported at x given by

k(x)(U) =

{
k(x), if x ∈ U , and

0, otherwise.

Proposition 3.1.1. Let X and Y be smooth projective varieties over k. If there is an exact
equivalence Db(X)

∼−→ Db(Y ) of bounded derived categories, then dimk(X) = dimk(Y ).
In this case, both ωX and ωY have the same order (can be infinity too).

Proof. Since both X and Y are smooth projective k-varieties, by Theorem 2.2.5, they
admit natural Serre functors SX := (ωX ⊗−)[dimk(X)] and SY := (ωY ⊗−)[dimk(Y )],
respectively. By Lemma 2.2.2, any k-linear equivalence F : Db(X) −→ Db(Y ) com-
mutes with Serre functors SX and SY (i.e., there is a natural isomorphism of functors
F ◦ SX ∼= SY ◦ F ).
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For a closed point x ∈ X , we have k(x) ∼= k(x)⊗ ωX ∼= SX(k(x))[− dimk(X)]. So,

F (k(x)) ∼= F (k(x)⊗ ωX) = F (SX(k(x))[− dimk(X)])

∼= F (SX(k(x)))[− dimk(X)], since F is exact.
∼= SY (F (k(x)))[− dimk(X)], since F ◦ SX ∼= SY ◦ F .(3.1.2)
∼= F (k(x))⊗ ωY [dimk(Y )− dimk(X)] .

Since F is an equivalence of categories, F (k(x)) is a non-trivial bounded complex.
Let i be the maximal (resp., minimal) integer such that Hi(F (k(x))) 6= 0. Now from
(3.1.2) we have

0 6= Hi(F (k(x))) ∼= Hi(F (k(x))⊗ ωY [dimk(Y )− dimk(X)])

∼= Hi+dimk(Y )−dimk(X)(F (k(x))⊗ ωY )

∼= Hi+dimk(Y )−dimk(X)(F (k(x)))⊗ ωY .(3.1.3)

Since ωY is a line bundle, (3.1.3) contradicts maximality (resp., minimality) of iwhen-
ever dimk(X) < dimk(Y ) (resp., dimk(X) > dimk(Y )). Therefore, dimk(X) = dimk(Y ).

To see that both ωX and ωY have the same order, assume that ωkX ∼= OX . Let
n = dimk(X) = dimk(Y ). Note that, SkX [−kn] ∼= IdDb(X). Since F ◦ SX ∼= SY ◦ F ,
choosing a quasi-inverse of the equivalence F , we have

F−1 ◦ SkY [−kn] ◦ F ∼= SkX [−kn] ∼= IdDb(X)

⇒SkY [−kn] ∼= IdDb(Y ) .

Applying OY to the above isomorphism of functors, we get ωkY ∼= OY . �

Remark 3.1.4. In the proof of above Proposition, to show both ωX and ωY have the
same order, under the assumption that dim(X) = dim(Y ), we don’t need F to be
exact.

3.2. Point like objects.

Definition 3.2.1. A graded category is a pair (D, TD) consisting of a category D and
an equivalence functor TD : D → D, known as shift functor. A functor F : D → D′
between graded categories is called graded if there is an isomorphism of functors
F ◦ TD

'−→ TD′ ◦ F .

Example 3.2.2. Any triangulated category is a graded category, and any morphism
between two triangulated categories is a graded morphism.

Definition 3.2.3. Let D be a k-linear triangulated category with Serre functor S. An
object P ∈ D is said to be point like of codimension s if

(i) S(P ) ∼= P [s],
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(ii) Hom(P, P [i]) = 0, for i < 0, and
(iii) k(P ) := Hom(P, P ) is a field.

An object E of an additive category is called simple if Hom(E,E) is a field.

Example 3.2.4. Let X be a smooth projective k-variety of dimension n.

(i) For any closed point x ∈ X , we have SX(k(x)) = (k(x) ⊗ ωX)[n] ∼= k(x)[n].
Therefore, k(x) ∈ Db(X) is a point like object of codimension d.

(ii) Let ωX ∼= OX (for example when X is an abelian variety or a K3 surface). Then
any simple object E ∈ Coh(X) defines a point like object of codimension n in
Db(X).

Proposition 3.2.5. Let A be an abelian category, and A• ∈ Db(A). Let

i+ := max{i : Hi(A•) 6= 0} and i− := min{i : Hi(A•) 6= 0}.

Then in Db(A), there are morphisms φ : A• → Hi+(A•)[−i+] and ψ : Hi−(A•)[−i−]→ A•

such thatHi+(φ) = IdHi+ (A•) andHi−(ψ) = IdHi− (A•).

Proof. There is a natural quasi-isomorphism of complexes

A•− :

qis

��

· · · // Ai
+−1 // Ker(di

+
)

� _

��

// 0

��

// · · ·

A• : · · · // Ai
+−1 // Ai

+ di
+

// Ai
++1 // · · · .

Since the natural morphism of complexes A•− −→ Hi+(A•)[−i+] induces identity
morphism at i+-th cohomology, the first part follows. The second part is similar. �

Corollary 3.2.6. With the above notations, for any B ∈ A, we have the following natural
isomorphisms

(i) HomDb(A)(Hi+(A•), B) ∼= HomDb(A)(A
•, B[−i+]), and

(ii) HomDb(A)(B,Hi−(A•)) ∼= HomDb(A)(B[−i−], A•).

Proof. Send f ∈ HomDb(A)(Hi+(A•), B) to f [−i+] and use above Proposition 3.2.5. To
get the inverse map, send any φ ∈ HomDb(A)(A

•, B[i+]) to Hi+(φ)[−i+]. The second
part is similar. �

Remark 3.2.7. Let A• ∈ D(A) with Hi(A•) = 0, for all i < m. Then there is a distin-
guished triangle

Hm(A•)[−m] −→ A•
ϕ−→ B• −→ Hm(A•)[1−m]

in the derived category D(A) such that

Hi(B•) ∼=
{
Hi(A•) if i ≤ m, and

0, if i > m.
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Remark 3.2.8. Let X be a smooth projective k-variety of dimension d. Then any
point like object P ∈ Db(X) has codimension d. This follows from assumption (i) in
the Definition 3.2.3, because looking at minimal i with non-zero cohomologies, the
isomorphism P ⊗ ωX [d] ∼= P [s] implies

(3.2.9) Hi(P )⊗ ωX [d] ∼= Hi(P )[s].

This forces d = s.

Lemma 3.2.10. Let M be a finitely generated non-zero module over a noetherian ring A.
Then there is a finite chain of A-submodules

0 = M0 (M1 ( · · · (Mn = M

such that Mi/Mi−1 ∼= A/pi (as A-modules), for some pi ∈ Supp(M).

Proof. Denote by Ass(M) the set of all associated primes of M . Recall that, Ass(M) ⊆
Supp(M) for any finitely generated A-module M . Since M 6= 0, we can choose a
p1 ∈ Ass(M) to get an A-submodule

M1 := image(A/p1 ↪→M) ⊂M.

If M1 6= M , we do the same for M/M1 to choose a p2 ∈ Ass(M/M1) and apply the
same to obtain a sequence M1 ( M2 ⊆ M with M2/M1

∼= A/p2. Since (M/M1)p2 6=
0, we see that p2 ∈ Supp(M). Since M is finitely generated, the result follows by
induction. �

Corollary 3.2.11. With the above notation, if Supp(M) = {m}, for some maximal ideal
m of A, there is a surjective (resp., injective) A-module homomorphism M � A/m (resp.,
A/m ↪→M ).

Proof. Since Ass(M) = {m}, the result follows from the above Lemma 3.2.10. �

Definition 3.2.12. Support of a complex E• ∈ Db(X) is the union of the supports of
its cohomologies. In other words, Supp(E•) is the closed subset of X defined by

Supp(E•) :=
⋃
i∈Z

Supp(Hi(E•)) .

Lemma 3.2.13. Let E• ∈ Db(X) with Supp(E•) = Z1 ∪ Z2, for some disjoint closed
subsets Z1 and Z2 in X . Then E• ∼= E•1

⊕
E•2 , for some non-zero objects E•j ∈ Db(X) with

Supp(E•j ) ⊆ Zj , for all j = 1, 2.

Proof. This is clear for any E ∈ Coh(X), and hence the result follows for E• ∼= E[n] ∈
Db(X), for E ∈ Coh(X) and n ∈ Z. Let

i+E• := max{i ∈ Z : Hi(E•) 6= 0} and i−E• := min{i ∈ Z : Hi(E•) 6= 0};
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and we drop the subscript E• when there is no confusion likely to arise. The length
of an object E• ∈ Db(X) is the difference i+ − i−. For general case, we use induction
on the length of a complex.

Let E• ∈ Db(X) be a complex of length at least 2. Let m = i−E• , and write H :=

Hm(E•). The sheafH can be decomposed asH ∼= H1

⊕
H2, with Supp(Hj) ⊂ Zj , for

j = 1, 2. By Proposition 3.2.5, we have a natural morphism H[−m]
ϕ−→ E• inducing

identity morphism on the m-th cohomology; complete it to a distinguished triangle

H[−m]
ϕ−→ E• −→ F • := C(ϕ) −→ H[1−m] .

Then from long exact sequence of cohomologies we have

Hi(F •) =

{
Hi(E•), if i > m, and

0, if i ≤ m;

(c.f. Remark 3.2.7). Since the length of F • is less than the length of E•, induction
hypothesis applied to F • gives a decomposition F • ∼= F •1

⊕
F •2 with Supp(Hi(F •j )) ⊂

Zj , for all j = 1, 2, and i ∈ Z. Since H−q(F •1 ) and H2 are coherent sheaves of OX-
modules with disjoint supports, we have

HomDb(X)(H−q(F •1 ),H2[p]) = Extp(H−q(F •1 ),H2) = 0, ∀ p ∈ Z,

which can be verified locally. Then Hom(F •1 ,H2[1−m]) = 0 follows from the spectral
sequence

Ep,q
2 := Hom(H−q(F •1 ),H2[p]) =⇒ Ep+q := Hom(F •1 ,H2[p+ q]).

Similarly, we have Hom(F •2 ,H1[1 − m]) = 0. Choose a complex E•j to complete a
distinguished triangle

E•j −→ F •j −→ Hj[1−m] −→ E•j [1], ∀ j = 1, 2,

we have a decomposition E• ∼= E•1
⊕

E•2 . Since Supp(F •j ) ⊂ Zj , it follows that
Supp(E•j ) ⊂ Zj , for all j = 1, 2. �

Lemma 3.2.14. Let E• be a simple object in Db(X) with zero dimensional support. If
Hom(E•, E•[i]) = 0 for all i < 0, then E• ∼= k(x)[m] for some closed point x ∈ X

and integer m.

Proof. Since E• is supported in dimension zero, Supp(E) is a finite subset of closed
points in X . If Supp(E) is not a singleton set, then it has disjoint components. Then
in Db(X), we have an isomorphism E• ∼= E•1

⊕
E•2 , with E•j 6' 0, ∀ i = 1, 2, which

contradicts simplicity of E•. Therefore, Supp(E•) is a closed point, say x ∈ X . Let
i+ := max{i : Hi(E•) 6= 0} and i− := min{j : Hj(E•) 6= 0}. Since both Hi+(E•)

andHi−(E•) have support {x}, they are given by finite modules over the noetherian
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local ringOX,x supported at mx. Then applying Corollary 3.2.11, we get a non-trivial
OX,x-module homomorphism φ : Hi+(E•) −→ Hi−(E•) given by the composition

Hi+(E•) // // k(x) := OX,x/mx
� � // Hi−(E•).

Now it follows from Proposition 3.2.5 that the following composite morphism is
non-trivial.

E•[i+] −→ Hi+(E•)
φ−→ Hi−(E•) −→ E•[i−] .

Since Hom(E•, E•[i]) = 0 for all i < 0, we must have i− − i+ ≥ 0. Hence, i− =

i+ =: m (say). Therefore, E• ∼= E[m], for some E ∈ Coh(X) with Supp(E) = {x}.
Since Hom(E[m], E[m]) ∼= Hom(E,E), so E is simple. Then the natural surjective
homomorphism E → k(x) must be isomorphism. Therefore, E• ∼= k(x)[m]. �

Proposition 3.2.15 (Bondal–Orlov). LetX be a smooth projective k-variety with ωX or ω∨X
ample. Then any point like object in Db(X) is isomorphic to an object of the form k(x)[m],
for some closed point x ∈ X and some integer m.

Remark 3.2.16. Above result fails if neither ωX nor ω∨X is ample; c.f. Example 3.2.4.

Proof. Note that X is projective because there is an ample line bundle on X . Clearly
for any closed point x ∈ X and any integer m, the shifted skyscraper sheaf k(x)[m] ∈
Db(X) is a point like object of codimension d = dim(X) (c.f., Example 3.2.4).

To see the converse, let P ∈ Db(X) be a point like object of codimension n. It
follows from P ⊗ ωX [d] ∼= P [n] that n = d (c.f., Remark 3.2.8). Then we have,

(3.2.17) Hi(P )⊗ ωX ∼= Hi(P ), ∀ i ∈ Z .

Suppose that ωX is ample. Let

m 7→ PE(m) := χ(E ⊗ ωmX )

be the Hilbert polynomial of E ∈ Coh(X). Since deg(PE(m)) = dim(Supp(E)), taking
tensor product with ωX makes difference only if dim(Supp(E)) > 0. Therefore, form
(3.2.17) we conclude that Hi(P ) is supported in dimension zero. Since P is simple,
the result follows from Lemma 3.2.14. The same argument applies for ω∨X ample. �

3.3. Invertible objects. Now we realize line bundles on X as objects of Db(X).

Definition 3.3.1. Let D be a triangulated category together with a Serre functor TD :

D → D. An object L ∈ D is said to be invertible if for each point like object P ∈ D,
there is an integer nP (which also depends on L) such that

HomD(L, P [i]) =

{
k(P ), if i = nP , and

0, otherwise.
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Next, we characterize invertible objects in Db(X). For this, we need the following
well-known result form commutative algebra.

Lemma 3.3.2. Let M be a finitely generated module over a noetherian local ring (A,m). If
Ext1(M,A/m) = 0, then M is free.

Proof. Let k = A/m. Then any k-basis of M/mM lifts to a minimal set of generators
for the A-module M by Nakayama lemma. Thus we get a short exact sequence of
A-modules

0 −→ N
ι−→ An

φ−→M −→ 0.

Note that, N = Ker(φ) is finitely generated, and ι induces a trivial homomorphism
ι̃ : N/mN −→ kn. Since Ext1(M,k) = 0, the induced homomorphism

Hom(An, k) −→ Hom(N, k)

is surjective. Since HomA(An, k) ∼= Homk(k
n, k) and HomA(N, k) ∼= Homk(N/mN, k),

the homomorphism Homk(k
n, k) −→ Homk(N/mN, k) induced by ι̃ is surjective.

Since ι̃ = 0, this forces N/mN = 0. Then N = 0 by Nakayama lemma, and hence M
is a free A-module. �

Proposition 3.3.3 (Bondal–Orlov). Let X be a smooth projective k-variety. Any invertible
object in Db(X) is of the form L[m], for some line bundle L on X and some integer m.
Conversely, if any point like object of Db(X) is of the form k(x)[`], for some closed point x ∈
X and some integer `, then for any line bundle L on X and any integer m, L[m] ∈ Db(X)

is invertible.

Remark 3.3.4. Note that, by Proposition 3.2.15 the condition in the converse part of
the above Proposition is satisfied when ωX or ω∨X is ample.

Proof of Proposition 3.3.3. Step 1. Let E• ∈ Db(X) be an invertible object. Let m =

max{i ∈ Z : Hi(E•) 6= 0}. Then by Proposition 3.2.5, there is a morphism

E• −→ Hm(E•)[−m]

in Db(X) inducing identity morphism at m-th cohomologyHm(E•). This gives

(3.3.5) Hom(Hm(E•), k(x0)) = HomDb(X)(E
•, k(x0)[−m]) ,

(c.f., Corollary 3.2.6). Fix a closed point x0 ∈ Supp(Hm(E•)). Then by Lemma
3.2.10, there is an associated prime ideal p ⊆ mx0 and a surjective homomorphism
Hm(E•) � OX,x0/p, which gives a surjective homomorphism Hm(E•) � k(x0).
Therefore, by (3.3.5), we have

0 6= HomDb(X)(Hm(E•), k(x0)) = HomDb(X)(E
•, k(x0)[−m]) .

This forces nk(x0) = −m (c.f., Definition 3.3.1).



Page 12 of 21 Bondal-Orlov’s reconstruction theorem

Step 2. We show that, Ext1(Hm(E•), k(x0)) = 0.

Since nk(x0) = −m, it follows from the definition of invertible object E• ∈ Db(X)

that

(3.3.6) Hom(E•, k(x0)[1−m]) = Hom(E•, k(x0)[1 + nk(x0)]) = 0.

Consider the spectral sequence

Ep,q
2 := Hom(H−q(E•), k(x0)[p]) = Extp(H−q(E•), k(x0))(3.3.7)

=⇒Ep+q := Hom(E•, k(x0)[p+ q]).

SinceHm+1(E•) = 0, we have

(3.3.8) E3,−m−1
2 = Hom(Hm+1(E•), k(x0)[3]) = 0.

Also

(3.3.9) E−1,−m+1
2 = Hom(Hm−1(E•), k(x0)[−1]) = Ext−1(Hm−1(E•), k(x0)) = 0.

Now using (3.3.8) and (3.3.9), and taking H0 of the complex

· · · −→ 0 = E−1,−m+1
2

d−→ E1,−m
2

d−→ E3,−m−1
2 = 0 −→ · · · ,

we see that E1,−m
3 = E1,−m

2 ; similarly, E1,−m
r = E1,−m

2 , for all r ≥ 2. The following
picture of page E2 could be useful to understand the situation.

0

))

E0,−m+1
2

**

E1,−m+1
2

**

E2,−m+1
2 E3,−m+1

2

0 E0,−m
2

**

E1,−m
2

**

E2,−m
2 E3,−m

2

0 0 0 0 0

This shows that,

(3.3.10) E1,−m
2 = E1,−m

∞ .

Since E1,−m
∞ is isomorphic to a subquotient of

(3.3.11) E1−m = Hom(E•, k(x0)[1−m]) = 0

(see, (3.3.6) and (3.3.7)), using (3.3.10) we conclude that E1,−m
2 = 0. Therefore,

(3.3.12) Ext1(Hm(E•), k(x0)) = 0, ∀ x0 ∈ Supp(Hm(E•)) .

Step 3. We show thatHm(E•) is a locally free OX-module.

For this, we consider the local-to-global spectral sequence

(3.3.13) Ep,q
2 := Hp(X, Extq(Hm(E•), k(x0))) =⇒ Extp+q(Hm(E•), k(x0)) ,
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which allow us to pass from the global vanishing Ext1(Hm(E•), k(x0)) = 0 to the
local one Ext1(Hm(E•), k(x0)) = 0.

Since Ext0(Hm(E•), k(x0)) is a skyscraper sheaf supported at x0, it is flasque, and
hence is Γ-acyclic. Then form (3.3.13), we have

(3.3.14) E2,0
2 = H2(X, Ext0(Hm(E•), k(x0))) = 0 .

Again,

(3.3.15) E−2,22 = H−2(X, Ext2(Hm(E•), k(x0))) = 0 .

Since at page E2, we have morphisms

0 = E−2,22
d−→ E0,1

2
d−→ E2,0

2 = 0,

we have E0,1
3 = H0(· · · → 0 → E0,1

2 → 0 → · · · ) = E0,1
2 . Similar computations shows

that E0,1
r = E0,1

2 , for all r ≥ 2. Hence we conclude that,

(3.3.16) E0,1
2 = H0(X, Ext1(Hm(E•), k(x0))) = E0,1

∞ .

Since E1 = Ext1(Hm(E•), k(x0)) = 0 by Step 2, we have E0,1
2 = E0,1

∞ = 0. Since k(x0)

is a skyscraper sheaf supported at x0, we see that Ext1(Hm(E•), k(x0)) is supported
over {x0}, and hence is globally generated. Since

H0(X, Ext1(Hm(E•), k(x0)) = E0,1
2 = 0,

we have Ext1(Hm(E•), k(x0)) = 0. SinceHm(E•) ∈ Coh(X), we have

(3.3.17) Ext1OX,x0
(Hm(E•), k(x0)) = Ext1(Hm(E•), k(x0))x0 = 0.

The by Lemma 3.3.2, Hm(E•)x0 is free OX,x0-module. Since freeness is an open
property, there is a non-empty open (dense) subset U of X containing x0 such that
U ⊆ Supp(Hm(E•)) and Hm(E•)

∣∣
U

is a free OU -module. Since X is irreducible,
Hm(E•) is locally free on X .

Step 4. We show that,Hm(E•) is a line bundle on X .

Since Supp(Hm(E•)) = X , there is a surjective homomorphism Hm(E•) � k(x),
for each x ∈ X . Then following argument of Step 1, we have

(3.3.18) Hom(E•, k(x)[−m]) = Hom(Hm(E•), k(x)) 6= 0, ∀ x ∈ X.

Now it follows from Definition 3.3.1 of invertible objects that

(3.3.19) nk(x) = −m, ∀ x ∈ X.

If r is the rank ofHm(E•), we have

k(x) = Hom(E•, k(x)[−m]) = Hom(Hm(E•), k(x))

= Hom(O⊕rX,x, k(x)) ∼= k(x)⊕r .(3.3.20)

Therefore, r = 1, and henceHm(E•) is a line bundle on X .
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Step 5. We show that,Hi(E•) = 0, for all i < m.

From the spectral sequence in (3.3.7), we have

Eq,−m
2 = Hom(Hm(E•), k(x)[q])

= Extq(Hm(E•), k(x))

∼= Hq(X,Hom(Hm(E•), k(x))) = 0, ∀ q > 0,(3.3.21)

because Hom(Hm(E•), k(x)) is a skyscraper sheaf supported on {x}, and hence is
Γ-acyclic.

Suppose that i < m. Then it follows from Definition 3.3.1 and (3.3.19) that

(3.3.22) E−i = Hom(E•, k(x)[−i]) = 0, ∀ x ∈ X.

Now to showHi(E•) = 0, it is enough to show that

(3.3.23) E0,−i
2 = Hom(Hi(E•), k(x)) = 0, ∀ x ∈ X.

Since E−i = 0, if we can show that

(3.3.24) E0,−i
2 = E0,−i

∞ ,

then from the spectral sequence (3.3.7) we would get E0,−i
2 = 0. We prove this by

induction on i.

If i = m − 1, then E2,−i−1
2 = E2,−m

2 = 0 by (3.3.21). Since negative indexed Ext
groups between two coherent sheaves are zero, we have E

−2,−(m−2)
2 = 0. Then

(3.3.24), for the case i = m− 1, follows from the complex

· · · → 0 = E
−2,−(m−2)
2

d−→ E0,1−m
2

d−→ E2,−m
2 = 0→ · · · .

Therefore, Hm−1(E•) = 0. Assume inductively that Hi(E•) = 0, for all i ∈ Z, with
i0 < i ≤ m− 1. Then putting m = i0 + 1 in (3.3.21) and usingHi0+1(E•) = 0, we have
E2,−i0−1

2 = 0. Then (3.3.24) follows from the complex

· · · → 0 = E−2,1−i02
d−→ E0,−i0

2
d−→ E2,−i0−1

2 = 0→ · · · .

This completes induction. Therefore,Hi(E•) = 0, ∀ i < m, and hence for all i 6= m.

Step 6. Now we prove converse part of the Proposition 3.3.3. Suppose that any point
like object P ∈ Db(X) is of the form k(x)[`], for some closed point x ∈ X and ` ∈ Z.
Let L be a line bundle on X , and m ∈ Z. Then from Definition 3.3.1 we get

Hom(L[m], P [i]) ∼= Hom(L, k(x)[`+ i−m])

= Ext`+i−m(OX , L∨ ⊗ k(x))

∼= H`+i−m(X,L∨ ⊗ k(x)) ,(3.3.25)

which vanishes except for i = m − `. Then we set nP := m − `. This completes the
proof. �
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Remark 3.3.26. LetD be a (tensor) triangulated category admitting a Serre functor S.
If we naively define Picard group ofD to be the set Pic(D) of all invertible objects inD,
then for a smooth projective k-varietyX with ωX or ω∨X ample, we have Pic(Db(X)) =

Pic(X)× Z.

3.4. Spanning class of Db(X).

Definition 3.4.1. A collection Ω of objects in a triangulated category D is called a
spanning class of D (or spans D) if for all B ∈ D the following conditions hold.

(i) If Hom(A,B[i]) = 0, ∀ A ∈ Ω and all i ∈ Z, then B ∼= 0.
(ii) If Hom(B[i], A) = 0, ∀ A ∈ Ω and all i ∈ Z, then B ∼= 0.

Remark 3.4.2. If a triangulated categoryD admits a Serre functor, then the conditions
(i) and (ii) in the above Definition 3.4.1 are equivalent.

Proposition 3.4.3. Let X be a smooth projective k-variety. Then the objects of the form
k(x), with x ∈ X a closed point, spans Db(X).

Proof. It is enough to show that, for any non-zero object E• ∈ Db(X) there exists
closed points x1, x2 ∈ X and integers i1, i2 such that

Hom(E•, k(x1)[i1]) 6= 0 and Hom(k(x2), E
•[i2]) 6= 0 .

Since Hom(k(x2), E
•[i2]) ∼= Hom(E•, k(x2)[dim(X)−i2])∗ by Serre duality, it is enough

to show that Hom(E•, k(x1)[i1]) 6= 0, for some closed point x ∈ X and some i ∈ Z.
Let m := max{i ∈ Z : Hi(E•) 6= 0}. Then Hom(E•, k(x)[−m]) = Hom(Hm(E•), k(x))

by Corollary 3.2.6. Now choosing a closed point x in the support of Hm(E•), we see
that Hom(E•, k(x)[−m]) 6= 0. This completes the proof. �

Remark 3.4.4. Spanning class in Db(X) is not unique. For a smooth projective k-
variety X , for a choice of an ample line bundle L on X , we shall see later that, {L⊗i :

i ∈ Z} forms a spanning class in Db(X).

3.5. Proof of the reconstruction theorem. Now we are in a position to prove the
reconstruction theorem of Bondal and Orlov in the light of the following well-known
results.

Proposition 3.5.1. [Sta20, Tag01PR] Let X be a quasi-compact scheme. Let L be an in-
vertible sheaf of OX-modules on X . Consider the graded algebra S :=

⊕
i≥0

H0(X,Li), and

its ideal S+ =
⊕
i>0

H0(X,Li). For each homogeneous element s ∈ H0(X,Li), for i > 0, let

Xs := {x ∈ X : sx /∈ mxL
i
x}. Then the following are equivalent.

(i) L is ample.

https://stacks.math.columbia.edu/tag/01PR
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(ii) The collection of open sets Xs, with s ∈ S+ homogeneous, covers X , and the natural
morphism X −→ Proj(S) is an open immersion.

(iii) The collection of open sets Xs, with s ∈ S+ homogeneous, forms a basis for the Zariski
topology on X .

Proposition 3.5.2. Let X be a smooth projective k-variety. Let L be a line bundle on X . If
L or L∨ is ample, then the natural morphism of k-schemes

X −→ Proj

(⊕
n

H0(X,Ln)

)
is an isomorphism.

Theorem 1.0.1 (Bondal–Orlov). LetX be a smooth projective variety over k with canonical
line bundle ωX . Assume that ωX (resp., ω∨X) is ample. Let Y be any smooth projective variety
over k. If there is an exact equivalence F : Db(X)

∼−→ Db(Y ), then X ∼= Y as k-varieties.
In particular, ωY (resp., ω∨Y ) is ample.

Proof. Step 1. If F (OX) = OY , and ωY or ω∨Y is ample, the theorem follows.

Indeed, assume that F (OX) = OY . Since F is an exact equivalence of categories,
F ◦ SX ∼= SY ◦ F and dim(X) = dim(Y ) = n (say), (see Proposition 3.1.1). Then we
have

(3.5.3) F (ωkX) = F (SkX(OX))[−kn] = SkY (OY )[−kn] = ωkY , ∀ k .

Since F is fully faithful, we have

(3.5.4) H0(X,ωkX) = Hom(OX , ωkX) = Hom(OY , ωkY ) = H0(Y, ωkY ), ∀ k .

The product structure on the graded k-algebra
⊕
k

H0(X,ωkX) can be expressed in

terms of following composition: for si ∈ H0(X,ωkiX ), i = 1, 2, we have

s1 · s2 = Sk1X (s2)[−k1n] ◦ s1 .

Note that, s1 · s2 = s2 · s1 follows from the commutativity of the following diagram.

(3.5.5)

OX
s2
��

s1 // ωk1X

S
k1
X (s2)[−k1n]
��

ωk2X
S
k2
X (s1)[−k2n] // ωk1+k2X

Similarly, we have product structure on
⊕
k

H0(Y, ωkY ). Therefore, F naturally induces

an isomorphism of graded k-algebras

(3.5.6) F̃ :
⊕
k

H0(X,ωkX) −→
⊕
k

H0(Y, ωkY ) ,



A. Paul Page 17 of 21

which induces isomorphism of k-schemes

X
∼=−→ Proj

(⊕
k

H0(X,ωkX)
) ∼=−→ Proj

(⊕
k

H0(Y, ωkY )
) ∼=−→ Y,(3.5.7)

whenever ωY or its dual ω∨Y is ample (c.f., Proposition 3.5.2). Therefore, it is enough
to show that F (OX) = OY , and ωY or ω∨Y is ample whenever ωX or ω∨X is ample.

Step 2. We can assume that F (OX) = OY .

Indeed, it follows from Definition 3.2.3 and Definition 3.3.1 that an exact equiva-
lence F : Db(X)→ Db(X) induce bijections

(3.5.8)

{point like objects of Db(X)} '
F // {point like objects of Db(Y )}

{k(x)[m] : x ∈ Xclosed and m ∈ Z} {k(y)[m] : y ∈ Yclosed and m ∈ Z}
?�

(∗)

OO

and

(3.5.9)

{invertible objects of Db(X)} '
F // {invertible objects of Db(Y )}

� _

(∗∗)
��

{L[m] : L ∈ Pic(X) and m ∈ Z} {M [m] : M ∈ Pic(Y ) and m ∈ Z} ,

where Xclosed (resp., Yclosed) is the set of all closed points of X (resp., Y ), and the
vertical inclusions and equalities are given by Proposition 3.2.15 and Proposition
3.3.3. Therefore, F (OX) = M [m], for some M ∈ Pic(Y ) and some m ∈ Z.

If F (OX) 6= OY , replacing F with the following composite functor

(3.5.10) Db(X)
F // Db(Y )

(M∨⊗−)[−m]
// Db(Y ) ,

which is an exact equivalence sendingOX toOY , we may assume that F (OX) = OY .
Therefore, it remains to show is that ωY or its dual is ample.

Step 3. We establish bijections Xclosed
F←→ Yclosed and Pic(X)

F←→ Pic(Y ).

Using the equivalence F , we first show that the vertical inclusion (∗) in the dia-
gram (3.5.8) is a bijection. This immediately imply that the vertical inclusion (∗∗) in
the diagram (3.5.9) is bijective by Proposition 3.3.3. Then Step 3 will follow.

By horizontal bijection in the diagram (3.5.8), for any closed point y ∈ Y there is
a closed point xy ∈ X and my ∈ Z such that F (k(xy)[my]) ∼= k(y). Suppose on the
contrary that there is a point like object P ∈ Db(Y ), which is not of the form k(y)[m],
for any closed point y ∈ Y and integer m. Because of bijection in (3.5.8), there is
a unique closed point xP ∈ X and integer mP such that F (k(xP )[mP ]) ∼= P . Then
xP 6= xy, for all closed point y ∈ Y . Hence, for any closed point y ∈ Y and any
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integer m, we have

Hom(P, k(y)[m]) = Hom(F (k(xP )[mP ]), k(y)[m])

= Hom(k(xP )[mP ], k(xy)[my +m])(3.5.11)

= Hom(k(xP ), k(xy)[my +m−mP ]) = 0,

because k(xP ) and k(xy) being skyscraper sheaves supported at different points,
Exti(k(xP ), k(xy)) = 0, for all i. Since the objects k(y), with y ∈ Y a closed point,
form a spanning class of Db(X) (c.f. Definition 3.4.1), P ∼= 0 by Proposition 3.4.3,
which contradicts our assumption that P is a point like object in Db(Y ). Therefore,
point like objects of Db(Y ) are exactly of the form k(y)[m], for y ∈ Y a closed point
and m ∈ Z.

Note that, for any closed point x ∈ X , there is a closed point yx ∈ Y such that
F (k(x)) ∼= k(yx)[mx], for some mx ∈ Z. Since F is fully faithful and F (OX) = OY ,
we have Hom(OX , k(x)) = Hom(OY , k(yx)[mx]) = Extmx(OY , k(yx)) 6= 0. This forces
mx = 0, and hence F (k(x)) ∼= k(yx) (no shift!). This immediately imply that, for any
L ∈ Pic(X), F (L) ∼= M , for some M ∈ Pic(Y ). Indeed, from bijections in the diagram
(3.5.9), we find unique M ∈ Pic(Y ) and mL ∈ Z such that F (L) ∼= M [mL]. Take
closed points x ∈ X and yx ∈ Y such that F (k(x)) ∼= k(yx). Then

Ext−mL(M,k(yx)) = Hom(M,k(yx)[−mL]) = Hom(M [mL], k(yx))

= Hom(F (L), F (k(x))) = Hom(L, k(x)) 6= 0.

This forces mL = 0.

Step 4. Recovering Zariski topology from derived category to conclude ampleness.

Let Z be a quasi-compact k-scheme. Denote by Z0 the subset of all closed points of
Z. Take line bundles L1 and L2 on Z, and take α ∈ Hom(L1, L2) = H0(X,L∨1 ⊗ L2).
For each closed point z ∈ Z, let

(3.5.12) α∗z : Hom(L2, k(z)) −→ Hom(L1, k(z))

be the homomorphism induced by α. Then Uα := {z ∈ Z : α∗z 6= 0} is a Zariski open
subset of Z, and hence Uα ∩ Z is open in Z0.

Fix a line bundle L0 ∈ Pic(X). Then it follows from Proposition 3.5.1 that the
collection of all such Uα, where α ∈ H0(X,Ln0 ) and n ∈ Z, forms a basis for the
Zariski topology on Z if and only if either L0 or L∨0 is ample.

By Step 3, the exact equivalence F : Db(X) −→ Db(Y ) sends closed points of X
to closed points of Y bijectively, and sends line bundles on X to line bundles on Y

bijectively. In particular, F (ωiX) ∼= ωiY , for all i ∈ Z. Then the natural isomorphisms
H0(X,ωiX) ∼= H0(Y, ωiY ), ∀ i ∈ Z, give rise to a bijection between the collection of
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open subsets

BX := {Uα : α ∈ H0(X,ωiX) and i > 0 (resp., i < 0)}, and

BY := {Vα : α ∈ H0(Y, ωiY ) and i > 0 (resp., i < 0)}.

Since ωX (resp., ω∨X) is ample, BX is a basis for the Zariski topology on X , and hence
BX0 := {Uα ∩ X0 : α ∈ H0(X,ωiX) and i > 0 (resp., i < 0)} is a basis for the Zariski
topology onX0. Therefore, BY0 := {Vα∩Y0 : α ∈ H0(Y, ωiY ) and i > 0 (resp., i < 0)} is
a basis for the Zariski topology on Y0, and hence BY is a basis for the Zariski topology
on Y (see Lemma 3.5.13 below). Therefore, ωY (resp., ω∨Y ) is ample. This completes
the proof. �

I thank Arideep Saha for some useful discussion leading to the following Lemma.

Lemma 3.5.13. Let X be a scheme locally of finite type over Spec(k), where k is a field or
Z. Let X0 be a subset of X containing all closed points of X . Let BX := {Uα : α ∈ Λ}
be a collection of open subsets of X such that BX0 := {Uα ∩ X0 : α ∈ Λ} is a basis for the
subspace Zariski topology on X0. Then B is a basis for the Zariski topology on X .

Proof. Step 1. First we show that, if an open set U ⊂ X contains a closed point x0, then for
any point x ∈ X which contains x0 in its closure (i.e., x0 ∈ {x}), we have x ∈ U . Since BX0

is a basis, there is α ∈ Λ such that x0 ∈ Uα ∩X0 ⊆ U ∩X0. If x /∈ Uα, then x belongs
to the closed set X \ Uα, and hence {x} ⊆ X \ Uα, which contradicts the assumption
that x0 ∈ {x}. Therefore, x ∈ Uα. Since closure of any point in X contains a closed
point, it follows that BX is an open cover for X .

It remains to show that for x ∈ Uα ∩ Uβ , there is γ ∈ Λ such that x ∈ Uγ ⊆ Uα ∩ Uβ .

Step 2. Assume that, for any open subset U of X with x ∈ U , there is a closed point
x0 ∈ {x} ∩ U . For then, taking U = Uα ∩ Uβ , we can find a γ ∈ Λ such that

x0 ∈ Uγ ∩X0 ⊆ Uα ∩ Uβ ∩X0.

Then we will have Uγ ⊆ Uα ∩ Uβ . Indeed, for each z ∈ Uγ , by above assumption there
is a closed point z0 ∈ {z} ∩ Uα ∩ Uβ . Then by Step 1, we have z ∈ Uα ∩ Uβ .

Step 3. We now prove the assumption of Step 2. Since the statement is local, we may
assume that X = Spec(A), for some finitely generated k-algebra A. For each f ∈ A,
let Df := {q ∈ Spec(A) : f /∈ q}. Since {Df : f ∈ A} forms a basis for the Zariski
topology on Spec(A), any point p ∈ Spec(A) is contained in Df , for some f ∈ A\{0}.
We claim that, there is a closed point (maximal ideal) m ∈ Df with p ⊂ m. If not, then
all closed points (maximal ideal) m ∈ Max(A/p) ⊂ Spec(A/p) lies outside Df . Since
A/p is a finitely generated k-algebra, we have

Jac(A/p) =
⋂

m∈Max(A/p)

m =
⋂

q∈Spec(A/p)

q = Nil(A/p),



Page 20 of 21 Bondal-Orlov’s reconstruction theorem

which is zero because A/p is an integral domain. This contradicts the fact that f 6= 0

in A/p. This completes the proof. �

Although we don’t need full strength of the following Lemma 3.5.14 here, let me
mention it here since it can be useful in may purpose. I thank Saurav Bhaumik for
explaining it to me.

Lemma 3.5.14. Any polarized reduced projective scheme locally of finite type over a field
can be reconstructed from its set of closed points.

Proof. Let X be a reduced projective k-scheme, which is locally of finite type over
Spec(k). If IX ⊂ OPn

k
is the ideal sheaf of a closed embedding ι : X ↪→ Pnk , for some

integer n ≥ 1, then X ∼= Proj(S/I), where I :=
⊕
i≥0

H0(Pnk ,IX(i)) is the homogeneous

ideal of the graded k-algebra S := k[x0, . . . , xn]. Therefore, it suffices to show that, I
coincides with the ideal of homogeneous polynomials in S vanishing at each closed
point of X . It follows from the exact sequence

0 −→ H0(Pnk ,IX(i)) −→ H0(Pnk ,OPn
k
(i)) −→ H0(X,OX(i))

that H0(Pnk ,IX(i)) can be identified with the set of all homogeneous polynomials of
degree i in S that vanishes at each point of X . Therefore, it suffices to show that, if X
is a finite type reduced k-subscheme of a k-scheme X̃ , a section s ∈ H0(X̃, L) of a line
bundle L on X̃ vanishes at every closed points ofX if and only if s|X = 0. This can be
checked locally. Take an affine open subset U = Spec(A) of X such that L

∣∣
U

is trivial.
Then s

∣∣
U

is given by an element f ∈ A. Since s vanishes at every closed points of X ,
f ∈ Jac(A). Since X is locally of finite type over Spec(k), Jac(A) = Nil(A), which is
zero because X is reduced. Therefore, f = 0, and hence s

∣∣
X

= 0. Hence the result
follows. �

Remark 3.5.15. When k is an algebraically closed, there is a more geometric proof of
ampleness of ωY or its dual. The idea is to use the fact that line bundle is very ample
if and only if it separates points and tangent vectors; see [Huy06].
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