Towards Kodaira's Embedding Theorem

Lecture 2

Contents:

- O. Recap. from the last lecture.
- 1. Kähler structure on projective bundle.
- 2. Blow-up of a manifold along a closed submanifold.

Recap. Let X be a complex manifold. Let M be the underlying real differentiable manifold of X. Then the complex structure on X induces an integrable almost complex structure I: $TM \rightarrow TM$ with $I^2 = -Id_{TM}$. lensoning with C, I: $TM\otimes C \longrightarrow TM\otimes C$ gives eigen Space decomposition $TM \otimes C = T^{1,0}M \oplus T^{0,1}M$, with $T^{1,0}M \cong TX$, the holomorphic tangent bundle of X.

Definition: A hermitian structure h on X=(M,I)is said to be Kähler if the induced real (1,1) - form $\omega_h := h(I(-), -)$

is d-closed, i.e., $d\omega_h = 0$.

The real (1,1)-form ω_h is known as the fundamental form of h_2 which is called a Käher form if $d\omega_h = 0$.

Since a hermitian metric h on the holomosophie tangent bundle TX of X preserves/respects the induceed almost complex structure I (i.e., h(I\xi, In)=h(\xi,\gamma)) for all locally defined sections &, n of TX, we can necouer a hormitian metsoie h en TX from its fundamental form Wn and the abonost complex structure I by the formula:

 $h(-,-)=\omega_h(-,I(-)).$

Last time we have discussed explicit construction of the Fubini-Study Kähler form ω_{FS} on the complex projective space P_{C}^{n} , which on the standard open covering $P_{C}^{n} = \bigcup_{i=0}^{n} U_{i}$ with $U_{i} \cong C^{n}$,

 $(Z_0; Z_1; \dots; Z_n) \mapsto (\overline{Z_0}, \dots; \overline{Z_i}, \dots; \overline{Z_i}) \in \mathbb{C}^n$

is given by the formula

 $|\omega_{FS}|_{U_i} := \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \left(\sum_{j=0}^{\infty} \left| \frac{Z_j}{Z_i} \right|^2 \right) \in \mathcal{A}^{1,1}(U_i), \forall i.$

Now we show how ω_{FS} defined on P_C^n induces a Kähler stoucture on $C^{nH} \setminus \{0\}$ via the natural projection map

 $\pi: \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathbb{R}^n = \mathbb{C}^{n+1} \setminus \{0\} / \mathbb{C}^*$

Over $\pi^{-1}(U_i) = \{(z_0, ---, z_n) \in \mathbb{C}^{n+1} \setminus \{0\} \mid z_i \neq 0\}$, we have,

T* $W_{FS} = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log \left(\frac{N}{2} \left| \frac{Z_k}{Z_i} \right|^2 \right)$

 $=\frac{\sqrt{-1}}{2\pi}\partial \overline{\partial} \left(\log ||Z||^2 - \log(|Z_i|^2)\right)$

Since $\Im \log(|z_i|^2) = 0$ (as we have seen earlier) we get $\pi^* \omega_{FS} = \frac{\sqrt{-1}}{2\pi} \Im \log(||z_i|^2)$.

Lemma: Let YCX be a complex submanifold of a complex manifold X. Then the restriction hy of any Kähler metric h on X is again Kähler.

Proof: Let I be the almost complex structure on X induced by its complex structure. Then $Iy = I|_{y}$ coincides with the almost complex structure induced from the complex structure of y. If h is a Hormitian metric on X, and $I|_{y} = I_{y}$ preserves Ty, $h_{y}:=h|_{y}$ remains Hermitian metric compatible with I_{y} , i.e., $h_{y}(I_{y}(-),I_{y}(-))=h_{y}(-,-)$. Then $d_{y}(\omega_{h_{y}})=d_{y}h_{y}(I_{y}(-),(-))=d_{x}h(I(-),(-))|_{y}=0$ and hence $\omega_{h_{y}}$ is Kähler.

Corollary: Any projective manifold is Kähler.

Proof: Since projective manifolds are by definition closed submanifolds of a projective space, restricting Fubini-Study metric, we get the required Kähler metric.

Remark: There could be many Kähler metnics on a submanifold $Y \subseteq X$, which do not come as a restriction of some Kähler metnic on X.

Let E be a holomorophic vector bundle on X, and P(E) be the associated projective bundle over X.

Then the compact complex manifold P(E) is Kähler.

Sketch of a proof?

Let $\pi: P(E) \longrightarrow X$ be the natural projection. Let $G_{P(E)}(-1)$ be the tautological line subbundle of π^*E over P(E) whose fiber over a point $ext{l}_X \in P(E_X) \subset P(E)$, $ext{l}_X \in X$, is the line $ext{l}_X \subset E_X$ itself. Define $ext{O}_{P(E)}(1) = ext{O}_{P(E)}(-1)^X$. Note that $ext{O}_{P(E)}(1) \mid_{P(E_X)} \cong ext{O}_{P(E_X)}(1)$, where $ext{P}(E_X) = \pi^{-1}(x)$, $ext{V} \times X \in X$.

Let h be a Hermitian metric on E. Then h induces a Hermitian metric π^*h on π^*E . Since $\mathcal{O}(-1)$ is a line subbundle of π^*E , we can restrict π^*h to get a Hermitian metric on $\mathcal{O}_{P(E)}(-1)$, which again induces a Hermitian metric, say h, on the dual line bundle $\mathcal{O}_{P(E)}(1)$.

Since X is a compact Kähler manifold, we have a Kähler form ω_X on X.

Then X being compact, one can find a positive real number $\lambda > 0$ such that the real closed (1,1)-form

 $\omega := \omega_{\widetilde{h}} + \lambda \pi^* \omega_{\chi}$

is positive on P(E). This completes the proof.

Blow-up of a complex manifold along a closed submanifold.

Let X be a complex manifold of dimension N. Let $Y \subseteq X$ be a closed complex submanifold of dimension M < N. Then blowup of X along Y is a complex mentfold $X := Bl_Y(X)$ together with a holomosophic map $T: Bl_Y(X) \longrightarrow X$

such that $\sigma(x)$; $B(y(x)) \sigma(y) \xrightarrow{\cong} X(y)$ is an isomorphism of complex manifolds and

is the projective bundle $P(N_{1/X}) \longrightarrow Y$, where $N_{1/X} = (J_{1}/J_{1}^{2})^{V}$ is the normal bundle of $Y \stackrel{>}{\subset} X$.

Construction of blow-up $\sigma: Bl_{\gamma}(X) \longrightarrow X$.

Case-1: Let $X = \mathbb{C}^{n+1}$, $Y = \{0\} \subseteq \mathbb{C}^{n+1}$ $n \geqslant 1$.

Thu Du

Let $(x_0:x_1:--:x_n)$ be the standard homogeneous local coordinate system on P_C^n . Let $(X_0,--,x_n)$ be the shotomorphic coordinates in C^{n+1} . Then X is defined by the relations $\{Z_i:x_j=Z_j:x_i\mid 0\leq i,j\leq n\}$.

Clearly $pr_1^{-1}(z) = \begin{cases} P^n & \text{if } z = 0 \text{ in } C^{n+1} \\ \begin{cases} x \\ z \end{cases} & \text{if } z \neq 0 \text{ in } C^{n+1} \end{cases}$

Also Pr_2 : $Z = \{(z,l) \in \mathbb{C}^{n+1} \times \mathbb{P}^n | z \in l^2\} \longrightarrow \mathbb{P}^n$ is a locally trivial family of lines in \mathbb{C}^{n+1} , and so is a lone bundle on \mathbb{R}^n ; its sheaf of sections is denoted by $\mathcal{O}_{\mathbb{P}^n}(-1)$.

Case- Π : Let $X = \mathbb{C}^N$ & $Y = \mathbb{C}^M$ embeded inside $X = \mathbb{C}^N$ by the equations $Z_{m+1} = \dots = Z_n = 0$, where (Z_1, \dots, Z_m) is the Standard local coordinates on \mathbb{C}^N , and $1 \leq m < n$.

Consider the incidence variety

 $Z := \{(z, l) \in \mathbb{C}^n \times \mathbb{P}(\mathbb{C}^{n-m}) : z \in \langle y, l \rangle \}$

Where $\langle Y, l \rangle = C$ -linear space generated by Y & l.

Note that Z is defined by the set of equations:

 $\begin{cases} Z_i \chi_j - Z_j \chi_i = 0 \mid i, j = m+1, ---, m \end{cases}$

Let $pr_1: Z \longrightarrow X = \mathbb{C}^n$ and $pr_2: Z \longrightarrow \mathbb{P}_{\mathbb{C}}^{n-m-1}$ be the projection maps.

Clearly, $pr_2^{-1}(l) = C^{m+1}$, $\forall l \in \mathbb{P}_C^{n-m-1}$ and one can check that $pr_2: \mathbb{Z} \longrightarrow \mathbb{P}^{n-m-1}$ is a holomorophic vector bundle of rank m+1.

By construction, $p_{1}^{-1}(\Xi) = \begin{cases} P(N_{1}|\Xi) = P_{1}^{n-m-1} & \text{if } \Xi \in Y \\ \text{for } \Xi \in X \setminus Y. \end{cases}$ Case III: Assume X, y are general. Choose a holomorphic atlas: $X = UU_i$, $\varphi_i: U_i \longrightarrow \widetilde{U}_i \subseteq C'$, $\varphi_{ij} := \varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \longrightarrow \varphi_i(U_i \cap U_j)$ is habonumphre \ti,j\ill, puch that $\varphi_i(UinY) = \varphi_i(Ui) n C^m, \forall i \in I$ Where CMC> &" by Zm+1= --= Zn z0. Let $p: Bl_{\mathbb{C}^m}(\mathbb{C}^n) \longrightarrow \mathbb{C}^n$ be the blow-up of \mathbb{C}^m along \mathbb{C}^m . Consider $Z_i = F^{\dagger}(q_i(U_i)) \longrightarrow Bl_{Cm}(C^n)$ $P_{i} := P|_{Z_{i}}$ $P_{i}(U_{i}) \longleftarrow P_{i}$

Then glue these $\{(Z_i, P_i)\}$ to construct the required blow-up map $T: Bl_{\gamma}(X) \longrightarrow X$.

Gluing of Local blow-ups to construct global one:

Let $U, V \subseteq \mathbb{C}^n$ be any two open subsets together with a biholomorphism $\varphi = (\varphi^1, ---, \varphi^n) : U \xrightarrow{\sim} V$. $\not \exists \mapsto (\varphi^1(z), ---, \varphi^n(z))$

Define a biholomomphism $\varphi: p'(U) \longrightarrow p'(V)$ inside $Bl_{zm}(C^n)$ by sending $(\Xi, x) \in P'(U) \longmapsto (\varphi(\Xi), A_{\beta}(x)) \in Bl_{zm}(C^n)$, where $A_{\beta} = (Y_j^i)_{m+1 \leq i,j \leq n}$ is the $(n-m) \times (n-m)$ rinations of holomomphic functions Y_j^i obtained from the power services expansions $(\Xi) = \sum_{j=m+1}^n \Xi_j Y_j^i(\Xi_1, --, \Xi_n), Y_j^i = m+1, --, n,$

and χ is the (n-m)×1 column matrix $(2m_H - - - 2n)^t$ so that $A_{\phi} \chi$ is a (n-m)×1 column matrix.

Then one can check that the image of $\widetilde{\varphi}: \overline{P}'(U) \longrightarrow BL_{\mathbb{C}^m}(\mathbb{C}^n)$ lands inside $P'(V) \subseteq BL_{\mathbb{C}^m}(\mathbb{C}^n)$, and is a biholomorphism $\widetilde{\varphi}: P'(U) \xrightarrow{} P'(V)$.

Now apply this construction to the transition maps (which are also biholomorphisms)

 $\varphi_{jj} = \varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \xrightarrow{\sim} \varphi_i(U_i \cap U_j)$

to get a biholomorphism $\varphi_{ij}: ZinZj \longrightarrow ZinZj \forall i,j \in I$

It remains to show that P_{ij} satisfies cocycle condition. Since the blowup map $P: Bl_{\mathbb{C}^m}(\mathbb{C}^n) \to \mathbb{C}^n$ is an iso over $\mathbb{C}^n \setminus \mathbb{C}^m$, we only need to check cocycle condition over $Y \subset X$. But over Y, the matrices we obtain for each $Y_i^j|_{\mathbb{C}^m}$ are by definition the matrices of transition functions for $N_{Y/X}$. Hence $\{Z_i:=P^j(P_i(U_i))\xrightarrow{P_i} P_i(U_i)\}_{i\in I}$ glues appropriately to give the required blow-up map $T:Bl_Y(X) \to X$. \square

Remark: It follows that blow-up of a one dimensional complex manifold X along a finite subset of points of X is Xitself.

Definition:

The hyperswiface $\sigma^{-1}(Y) = P(N_{Y/X}) \subset Bl_{Y}(X)$ is called the exceptional divisor of the blow-up more phism $\sigma: Bl_{Y}(X) \longrightarrow X$.

Romark:

If Y is a smooth divisor in X, its normal bundle over Y, and hence the exceptional locus $T'(Y) = P(N/X) \xrightarrow{>} Y$, which implies $O': Bly(X) \xrightarrow{\cong} X$ is an isomorphism.

Lemma: Let Y be a compact complex submanifold of a complex manifold X. Let $\sigma: X:=Bl_y(X) \longrightarrow X$ be the blow-up of X along Y. Then there is a holomorphic line bundle $\mathcal L$ on X which is trivial outside the exceptional divisor $E:=\sigma^{\tau}(Y)=\mathbb{P}(\mathcal{N}_{Y/X})\subset X$, and $\mathcal L|_{\sigma^{\tau}(Y)}\cong \mathcal O_{\mathbb{P}(N_{Y/X})}(1)$.

Sketch of a proof:

Let D be a hypersurface in a complex manifold X; this means, D is locally defined by a holomorphic function, which is unique up to multiplication by an invertible function (i.e., a section of C_X^*). Consider an open covering $X = UU_X$ of X such that DNU_X is defined by an equation $f_2 = 0$ in V_X , for some holomorphic function $f_4 \in C_X(V_A)$.

Of course we may take $U=X\setminus D$ as one of U_2 and $f_U=1$ on $U=X\setminus D$. Then for any other open set V from that covering of X, $g_{UV}:=f_U/f_V$ is an invertible function on UNV.

Since they satisfies cocycle condition on triple intersections UNVNW, we can use these guv 3 to construct a line bundle on X whose transition functions are guv.

This line bundle is usually denoted by Q(-D). By its construction $Q(-D)|_{X\setminus D}$ is to ivial.

Moreover, if $D \subset X$ is a smooth hypersurface in X, then $C_X(-D)|_D \cong N_{Y/X}$, where $N_{Y/X} = J_{Y}/J_{Y}^{2}$ is the conformal bundle of $D \stackrel{closed}{=} X$. This is because by differentiating the local defining equations for $D \hookrightarrow X$, we get the transition functions for the conformal bundle $N_{Y/X}^{*} = J_{Y}/J_{Y}^{2}$.

Now apply this construction to the smooth hypercsurface $E := T^{-1}(Y) \cong \mathbb{P}(N_{1/X}) \subset \mathbb{Bl}_{Y}(X) =: X$ to obtain $\mathcal{O}_{X}(-E)|_{E} \cong N_{E/X} \cdot \mathbb{T}$. Therefore, it is enough to show that the normal bundle $N_{E/X}$ to the exceptial divisor $E \cong \mathbb{P}(N_{1/X}) \subset X$ is isomorphic to the tautological line bundle $\mathcal{O}(-1)$ of the projective bundle $E = \mathbb{P}(N_{1/X}) \to Y$. This can be checked from the description of $\mathcal{O}_{P(N_{1/X})}(-1) \subset Y \cap Y \cap Y \cap Y$ and local description of blow-up map $X \xrightarrow{Y} X$.