MA3201: Topology

Dr. Arjun Paul

Assistant Professor
Department of Mathematics and Statistics
Indian Institute of Science Education and Research Kolkata,
Mohanpur - 741 246, Nadia,
West Bengal, India.

Email: arjun.paul@iiserkol.ac.in.

Version: May 15, 2024 at 3:57pm (IST).

Disclaimer: This note will be updated from time to time.

If you find any potential mistakes, please bring it to my notice.


mailto:arjun.paul@iiserkol.ac.in
https://arjunpaul29.github.io/home/notes/MA3201.pdf




Contents

List of Symbols
Syllabus

1 Metric Space

1.1 Definitionand Examples . . . . .. ... ... ... .. L o o
1.2 Topological properties . . . . . ... ... ... ...
Point Set Topology
21 Topologicalspace . . . . ... ... ... .. ... ... . ...
211 Ordertopology . . . . .. ... .
2.2 Interior point and limitpoint . . . .. ... ... ... L L Lo
23 Continuity . . . .. ... e
24 Producttopology . ... ... ... ... e
25 Hausdorffspace . . . ... ... ...
251 Exercises . . . . . ...
2.6 Quotientspace. . . . .. .. ...
2.7 Projective space and Grassmannian®™ . . . .. ... L L
2.7.1 Real and complex projective spaces . . . . .. ... ... ... ... .. ..
2.72 Grassmannian Gr(k,R") . . . . . ... .. L
2.8 Topological group™ . . . . ... ... .. ...
29 Connectedness. . . . . ... ... ...
2.10 Path-connectedness . . . . . . .. ... ...
211 Compactness . . . . . . . o

2.11.1 Limitpointcompactness . . . . ... ... .. ... ... . ... ...



iv

2.11.2 Local compactness . . . . ... ... ... ... ... 92
2.11.3 Net & Tychonoff’s Theorem . . . . .. ... .. ... ... ... ....... 99
2.12 Second countability and separability . . . .. ... ... ... .. 0000 105
2.13 Regular and normalspaces . ... ... .. ... ... ... ... .. ... . ... 110
2.14 Complete MetricSpaces . . . . .. .. ... ... .. .. ... 119
2.15 Ascoli-Arzelatheorem . . . ... ... ... ... ... L 134
2.16 Baire Category Theorem . . . .. ... ... ... .. ... ... ... ...... 141
2.17 Stone-Weierstrasstheorem . . . . . .. ... ... .. . L L L Lo 148
Algebraic Topology 153
3.1 Review of quotientspaces . . . .. ... ... .. ... 154
311 Examples . .. .. ... 154
312 CWComplex . .. .. .. .. ... e 154
313 Grassmanians . . . .. .. ... 154
32 Homotopyofmaps . .. ............. ... .. ... ... .. ... 154
3.3 Fundamentalgroup . . . . . ... ... ... . L L 157
33.1 Construction . .. ... .. ... ... 157
332 Functoriality . . . . ... ... ... 161
3.3.3 Dependency onbasepoint . ... .. ... .. ... ... ... ... 164
3.3.4 Fundamental group of somespaces . .. ................... 168
34 CoveringSpace . . .. . ... ... e 169
341 Coveringmap . . . . . . .o i 169
3.4.2 Fundamental groupof S' . . .. .. ... ... .. ... 179
3.4.3 Fundamental group of S”,forn >2 . .. ... ... ... . . ... 180
344 Someapplications . ... ........ ... ... oL 182
3.5 Galois theory for covering spaces . . . . ... ... .. ... . L 187
35.1 Universalcover . . ... ... ... ... .. .. ... 187
3.5.2 Construction of universalcover. . . . ... .. ... .. .. ... ..., 188
3.5.3 Groupactionand coveringmap . . ... ... ... ... L. 192

3.5.4 Group of Deck transformations . . . . .. .......... ... ... ... 193



355 Galoiscovers . .. ... . ... e 196

3.5.6 Galois correspondence for covering spaces . . . .. ... ... .. ... .. 197

3,57 Monodromyaction . . . . ... ... L 198

3.6 Homology . . . .. ... .. .. e 198
3.6.1 Simplicial Complex . . . . ... ... .. ... L o 198

3.62 Homologygroup . . ... ... ... ... .. .. .. ... 198

3.6.3 Homology group forsurfaces . . . . . ... .. ... .. .......... 198

3.6.4 Applications . . . .. ... 198

3.7 Cohomology . . . . . .. .. . 198

4 Appendix 199

41 CategoryTheory . .. .. ... ... .. .. .. ... 199






List of Symbols

vV
o

DEC§8 HFEMSs N <sHEHWININAIVVIAAOROZNNS

2 a
1
S oy

2>
¥
os]

0>
i

Empty set

The set of all integers

The set of all non-negative integers
The set of all natural numbers (i.e., positive integers)
The set of all rational numbers
The set of all real numbers

The set of all complex numbers
Less than

Less than or equal to

Greater than

Greater than or equal to
Proper subset

Subset or equal to

Subset but not equal to (c.f. proper subset)
There exists

Does not exists

For all

Belongs to

Does not belong to

Sum

Product

Plus and/or minus

Infinity

Square root of a

Union

Disjoint union

Intersection

A mapping into B

a maps to b

Inclusion map

A setminus B

Isomorphic to

A is defined to be ...

End of a proof

vii



viii

Symbol Name Symbol Name
o alpha B beta
0% gamma ) delta
T pi ¢ phi
@ var-phi P psi
€ epsilon € var-epsilon
4 zeta n eta
0 theta L iota
K kappa A lambda
U mu v nu
v upsilon [y rho
0 var-rho ¢ xi
o sigma T tau
X chi w omega
(@) Capital omega r Capital gamma
(C) Capital theta A Capital delta
A Capital lambda = Capital xi
PN Capital sigma IT Capital pi
() Capital phi Y Capital psi

Some of the useful Greek letters




ix

MA3201 Syllabus

MA3201 (Topology)

Metric Spaces: Metric space topology, equivalent metrics, sequences, complete met-
ric spaces, limits and continuity, uniform continuity, extension of uniformly continuous

functions.

Topological Spaces: Definition, examples, bases, sub-bases, product topology, subspace
topology, metric topology, second countability and separability.

Continuity: Continuous functions on topological spaces, homeomorphisms, quotient
topology.

Connectedness: Definition, example, path connectedness and local connectedness.

Compactness: Definition, limit point compactness, sequential compactness, net and di-
rected set, local compactness, Tychonoff theorem, Stone-Weierstrass theorem, ArzelaAs-
coli theorem.

Separation Axioms: Hausdorff, regular and normal spaces; Urysohn lemma and Tietze
extension theorem; compactification.

Metrizability: Urysohn metrization theorem.


https://www.iiserkol.ac.in/teaching-plan/course/2024/Spring/MA3201/




Chapter 1

Metric Space

1.1 Definition and Examples

A metric on a set X is a map
d:XxX—1[0,00):={teR:t>0}
such that
(i) d(x1,x2) >0, V xq,x2 € X, with equality holds if and only if x; = x;

(ii) d(xq,x2) =d(xp,x1), forall xq,x; € X, and

(iil) d(x1,x2) < d(xq,x3)+d(x3,x2), for all x1, xp, x3 € X.

A metric space is a pair (X, d) consisting of a set X and a metric 4 on it.

Example 1.1.1. The absolute value of a real number x € R is a non-negative real number |x|,

defined by
x, if x>0,
o '_{ —x, if x<0.

Letd : R X R — R be defined by
dix,y)=|x—y|, Vx,y e R.

Then (R, d) is a metric space.

Example 1.1.2 (Euclidean metric on R"). Fix an integer n > 1, and let
d:R"xR" - R

be the map defined by

. 1/2
d((x1,--,%n), W1, Yn)) = <Zl %] —yj|2> ,
iz
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for all (x1,...,xn), (Y1,--.,yn) € R". Then d is a metric on R", called the Euclidean metric on
R",

Example 1.1.3 (Euclidean metric on C"). Fix an integer n > 1, and let
d:C"xC" = R

be the map defined by

) 1/2
d((z1,---,2zn), (W1, ..., wy)) := <Z{ |z —wj|2) ,
i=

for all (z1,...,zn), (w1,...,wy) € C". Itis straight-forward to check that d is a metric on C",
called the Euclidean metric on C".

Example 1.1.4 (Taxicab/rectilinear metric). Letd : R” X R"” — R be the map defined by
n
d((x1, %), (1, ym)) = Y 15— yil,
j=1

forall (x1,...,xn), (y1,-..,yn) € R". Verify that d is a metric on R".

Example 1.1.5. Given a non-empty set X, letd : X x X — R be defined by

1, if x#y,

d(x,y) ;:{ 0, if xr—y

Then d is a metric on X, called the discrete metric on X.

Definition 1.1.6. Let (X, d) be a metric space. A non-empty subset A C X is said to be bounded
if there exists a real number M such that

dx,y) <M, VxyeA.
If A C X is a bounded subset of X, then the number
diam(A) := sup{d(a,b) :a,b € A}

is called the diameter of A in (X, d).

Exercise 1.1.7 (Standard bounded metric). Let (X, d) be a metric space. Show that
d'(x,y) == min{1,d(x,y)}, Vx,y € X
defines a metric on X.
Exercise 1.1.8. Let (X, d) be a metric space. Show that the map d’ : X x X — R defined by

d(x1,x2)
d’ == X,
<x11x2) 1 +d(x1,X2)’ vxl/xz S

is a metric on X.
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Exercise 1.1.9 (Subspace). Let (X, d) be a metric space. For any non-empty subset Y of X, show
that the restriction map
dy ;Y XY =R, (y1,y2) = d(y1,42),

is a metric on Y, called the induced metric on Y from (X,d). Then the pair (Y, dy) is called the
subspace of the metric space (X, d).

Example 1.1.10. Let d be the Euclidean metric on IR. Then

e ([0,1],d) is a subspace of (R, d).
* (Q,d)is asubspace of (R,d).

Exercise 1.1.11. Consider the unit circle
St :={(cost,sint) € R?: 0 < t < 27}

in R?. Given two points x; := (cosf,sinf),x; := (cos¢,sin¢) € S!, where 0 < 6,¢ < 27,
define
p(x1,x2) i= min {[6 — g1, 277 — |0 — B}

Show that p is a metric on S! that is not induced from the Euclidean metric d on IR?.

X
Q’l"b‘)
Hiw@» _ PC{' ]13)
A0,%)
2,=(Cx 8, Sn )
¢
b K3
(olo) .

v

Exercise 1.1.12. Let (X, dx) and (Y, dy) be two metric spaces. Show that the rule

d ((x1,y1), (x2,¥2)) == max{dx(x1,x2),dy(y1,¥2) }, ¥V (x1,y1), (x2,42) € X X Y

defines a metric on X X Y, called the product metric on X x Y. (Caution: This is a non-standard
terminology, and has nothing to do with product in general sense).

Definition 1.1.13. Let k be the field of real numbers or the field of complex numbers with the
Euclidean metric on it. A norm on a k-vector space X is a map |[|-| : X — R satisfying the

following properties:

@) x| >0, Vx € V,and ||x| = 0if and only if x = 0in X.
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(i) [ax| = |a||x|, Va €k, x € X.

(i) [x+yl < x|+ lyl, VxyeX

The pair (X, ||-|) is called a normed linear space.

Example 1.1.14. Let ||-|;, -], and ||| : R" — R be defined by

n
A [(x1, ... x| = 21 |xil, ¥ (x1,...,x1) €R",
]:

1/2
n
@) (1, .exn)lly = (Z x]2> , ¥ (x1,...,x,) € R", and
j=1

@i) [|(x1, . %0) e := 1122(71 xjl, ¥ (x1,...,xn) € R™.

Then |||, | -], and ||| are norms on IR".

Example 1.1.15. Let k be the field R or C together with the Euclidean metric on it. Let X be a
non-empty set and let B(X) be the set of all k-valued bounded functions defined on X. Define

Il = sup{[f(x)] - x € X}, ¥ f € B(X).
Then |||, is a norm on B(X).
Proposition 1.1.16. Let (X, |-||) be a normed linear space. Then the map d : X x X — R defined by
d(x,y) :=[x—yl, VryeX

is a metric on X, called the norm-induced metric on (X, ||-|).

Proof. Let x,y € X be arbitrary. Then by definition of norm, we have d(x,y) = |[x —y| > 0,
for all x,y € X, with equality holds if and only if x —y = 0, i.e,, x = y. Note that, d(y, x) =
ly — x| = | —1|||lx — y| = d(x,y). Moreover, given any z € X, we have

dx,y) =[x —y| = l(x —2) + (z—y)|
<fx—z[+z—y|
=d(x,z) +d(z,y)
=d(x,z) +d(y,z).
Therefore, d is a metric on X. O

Example 1.1.17. Given any (x1,...,Xn), (y1,.-.,yn) € R", the following formulae

o dl((xl/--~/xn)/(]/l/--~/]/n)) = ‘X] _]/1| + e + |x1’1 _]/n|/

o dy((x1,--,%n), (Y1, Yn)) =/ (x1 —y1)? + - + (xu — yu)?, and

® deo((x1,--,%n), (Y1, .-, yn)) = max{|x1 —v1|,..., |xn —ynl},
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define metrics d, d; and de on R" induced by the norms |-||;, |||, and |-||, respectively.

Exercise 1.1.18. Let k be the field R or C together with the standard Euclidean norm on it. Fix
an integer 7 > 1. For any real number p > 1, show that the map ||, : k" — R defined by

1
NG, oxn)ly = (IxalP + -+ |xalP)P, ¥ (1,00, x0) €K
is anorm on k", for all n > 1. The normed linear space (k", |-||,,) is denoted by £} (k).
Exercise 1.1.19. Fix a real number p with 0 < p < 1, and an integer n > 2.

(i) Show that the the map d), : R" x R" — R defined by

1
dp((x1,- o xn), Y1+ yn)) o= (10 =[P+ fxen =yl )7

for all (x1,...,%4), (Y1,.-.,¥n) € R", is not a metric on R". (Hint: Show that the triangle
inequality fails for x = (1,1,0,...,0),y = (0,1,0,...,0) and z = (0,0,...,0) in R").

(i) Verify if the map d}, : R"” x R" — R defined by
dy (1, 2n), (Y1) = lxa = yalP -+ [ =yl

forall (x1,...,xn), (y1,---,yn) € R",is a metric on R".

Exercise 1.1.20 (¢, space). Let k be the field of real numbers or the field of complex numbers
together with the Euclidean metric on it. A sequence in k is a map f : IN — k; we generally
denote it by (a,)_, where a, := f(n), V n € IN. Fix a natural number p > 1. Let

ly(k) := {(an)f_l cap €k, VneN, and ) |a,|P < oo}.

n=1

oo 1/p
|w¢=<zwm> -
n=1

is a norm on ¢, (k), and hence ¢, (k) is a metric space.

Givena = (a,)$ 4 let

Show that ||,

Exercise 1.1.21. Fix real numbers a and b with a < b, and let
Cla,b] := {f : [a,b] — R f is continuous}

be the set of all real-valued continuous maps defined on [a, b]. Show that the map |-|| : Cla, b] —
R defined by

b
If1:= [ 1£(lde, ¥ £ € Cla,b],

is a norm on the R-vector space C|a, b], which makes C[a, b] a metric space.
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1.2 Topological properties

Let (X, d) be a metric space. Given a point xp € X and a real number ¢ > 0, the open ball in
(X, d) with center at xq and radius ¢ is the subset

By(x0,0) :={x € X :d(x,x) < 6}

Example 1.2.1. (i) In the real line R with the Euclidean metric d, the open ball with center at
0 € R and radius r > 0 is the open interval (—7,7).

(ii) OnIR?, the open balls with center at the origin (0,0) € R? and radius 1 with respect to the
metrics d1,dy and dw (see Example 1.1.17) are given as follow:

P N &b
A 4

@

(R®, dy) (R?,d2) (R?, dsc )

Let U be a non-empty subset of X. A point x € U is said to be an interior point of U if there
exists a real number Jy > 0 such that B(x,6y) C U. A subset U C X is said to be open in (X, d)
if either U = @ or each point of U is an interior point of U. A subset Z C X is said to be closed
if its complement X \ Z is openin (X, d).

Example 1.2.2. Givena, b € R with a < b, show that each of the intervals listed below are open
with respect to the Euclidean metric on R.

* (a,b):={teR:a<t<b},
o (—oo,a):={teR:t<a},
* (a,00):={teR:a<t}and
o (—o0,00) = R.

Lemma 1.2.3. Let (X, d) be a metric space.

(i) X and @ are both open and closed in (X, d).
(ii) Arbitrary union of open subsets of X is open.

(iii) Finite intersection of open subsets of X is open.

Proof. (i) Clear.
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(i) Let {U : @ € I} be an indexed family of open subsets of (X,d). Let x € (J U,. Then
ael
there exists ay € I such that x € U,,. Then there exists a real number § > 0 such that

B(x,0) C Uy, < U Uy. Thus U U, isopenin (X, d).
acl

(iii) LetU;, ..., U, bea finite collection of open subsets of (X, d). Let xg € ﬂ U;. Since xg € U;
and U; is open in (X, d), there exists a ; > 0 such that B(xo, 6;) C for eachj=1,.
Let § := min{dy,...,6,} > 0. Then B(xq,d) C B(xo,é]-) c u, for all j = 1,...,n, and
n
hence B(xo,6) € N U;.
=1

O

Corollary 1.2.4. Let (X, d) be a metric space. Then arbitrary intersections of closed subsets are closed,
and a finite unions of closed subsets are closed.

Example 1.2.5. Givena,b € R witha <, let
[a,b] :={teR:a <t <b}

Since [a,b] = R\ ((—o0,a) J(b, o0)), it is closed in R.

Definition 1.2.6. A point xo € X is said to be a limit point of a subset A C X if for each real
number § > 0 we have

(B(x0,6) \ {x0}) (A # 2.

Example 1.2.7. (i) Consider the Euclidean space R. Let A = {1 : n € N} C R. Then0 € R
is a limit point of A.

(ii) Let X = {1 : n € N} U{0}. Equip X with the discrete metric d. Then 0 is not a limit point
of (X,d).

(iii) Let X = [0,1] U {2} equipped with the metric d’ induced from the Euclidean space R.
Then (X, d) is a metric subspace of R. Let A = By (1,1) = {x € X : d'(x,1) < 1}. Then A
is an open ball in X with center 1 and radius 1. However, 2 € X is not a limit point of A.

Proposition 1.2.8. Let (X, d) be a metric space. A subset Z of X is closed in (X,d) if and only if Z
contains all of its limit points.

Proof. Suppose that Z is closed in (X, d). If xg € U := X\ Z, then U being open in (X, d), there
exists a 6 > 0 such that B(xg,d) C U, and so B(xg,d) N Z = @. Therefore, xy cannot be a limit
point of Z.

Conversely, suppose that Z contains all of its limit pointsin (X, d). Let U := X \ Z, and xy €
U. Since xg ¢ Z and x is not a limit point of Z, there exists a § > 0 such that B(x,d) N Z = @.
Therefore, B(xp,4) C U. Since xy € U is arbitrary, U is openin (X, d) and hence Z is closed. [J

Lemma 1.2.9. Let (X, d) be a metric space and let A C X. Let €4 be the collection of all closed subsets

of (X,d) containing A. Then (\ Z is the smallest closed subset of X containing A, called the closure
AS N

of Ain (X,d).
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Proof. 1t follows from Lemma 1.2.3 that A := () Z is a closed subset of X. Clearly A C A.
VASHN
Let W be any closed subset of X containing A. Then W € €4, and hence | C W. O
ASHN

Proposition 1.2.10. Let (X, d) be a metric space. A subset A C X is closed if and only if A = A.

Proof. Suppose that A is closed. Let ¢4 be the collection of all closed subsets of (X, d) contain-

ing A. If A is closed, then A € %4, and hence A C A = () Z C A shows that A = A.
ZGCKA

Converse is obvious since A = () Z is closed. O
Z G%A

Proposition 1.2.11. Let (X, d) be a metric space. Given any two distinct points x,y € X there exist
positive real numbers ry and r, such that B(x,ry) N B(y,ry) = @.

Proof. Let x,y € X with x # y. Then r := d(x,y) > 0. Then the open balls B(x,r/2) and
B(y,r/2) do not intersect each others. Indeed, if there were z € B(x,r/2) N B(y,r/2), then
d(x,z) <r/2and d(z,y) <r/2givesr = d(x,y) <d(x,z) +d(z,y) <r/2+47r/2 =r,whichis
not possible. O

Definition 1.2.12 (Equivalent Metrics). Two metrics d1 and d, on a non-empty set X are said to
be topologically equivalent if for any subset U C X, U is open in (X, dq) if and only if U is open
in (X, dz)

Proposition 1.2.13. Let dy and dy be two metrics on a non-empty set X. Then the following are
equivalent.

(i) dq and dy are topologically equivalent.

(ii) given any point x € X and a real number r > 0, there exists real numbers v',r" > 0 such that

By, (x,7"") C By, (x,7) and By (x,1") C By, (x,7).

Proof. Suppose that d; and d, are topologically equivalent metrics on X. Let x € X andr > 0
be given. Since By, (x,7) is open in (X, d5), there exists " > 0 such that By, (x,r"”) C By, (x,7).
Similarly, since By, (x,7) is open in (X, d; ), there exists r' > 0 such that By, (x,7") C By, (x, 7).

Conversely, suppose that given any point x € X and a real number r > 0, there exists real
numbers 7/, " > 0 such that

By, (x,7"") € By, (x,7) and By (x,7") C Bgy(x,7).

Let U C X. Suppose that U is open in (X, d;). Then for given x € U, there exists rx > 0
such that By, (x,7y) C U. Then by assumption, there exists r{ > 0 such that By, (x,r)) C
By, (x,ry) € U, and hence x is an interior point of U with respect to the dp-metric on X. There-
fore, U is open in (X, dp). Similarly, if U is open in (X, d;), then for each x € U there exists
sy > 0 such that de(x,sx) C U. But then by our assumption, there exists s, > 0 such that
By, (x, sh) C By, (x,sx) C U, and hence x is an interior point of U with respect to the d; metric
on X. Therefore, U is open in (X, dy). O
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Lemma 1.2.14. Let X be a vector space over R or C. Let |-|; and ||, be two norms on X. Let dq
and dy be the metrics on X induced by the norms |||, and |-|,, respectively. Then dy is topologically

equivalent to dy if and only if there exist positive real numbers «, B > 0 such that

aflxly < fxl, < Bllxly, VxeX.

Proof. Suppose that there exist positive real numbers «, f > 0 such that
afxly < fxlly < Bllxli, Vxy € X

Let U C X be openin (X, d;). Then for given any x € U, there exists a real number r, > 0 such
that
By (x,rx) ={y € X:|x—y[, <re} CU.

Since
By, (x,arx) ={y € X : |x =y, < arc} € By (x,7x) C U,

we see that U is open in (X, d;). Now suppose that U is open in (X, dy). Then given x € U,

there exists a real number s, > 0 such that
By, (x,5:) = {y € X: |x —yll, <se} S U
Since
By, (x,5¢/B) ={y € X |lx —yly <sx/B} S{y € X:fx—ylly <B} = By, (x,50) C U,

we see that U is open in (X, d ). Therefore, d; and d, are equivalent metrics on X.

Conversely, suppose that d; and d, are topologically equivalent metrics on X. Since By, (0,1) =
{x € X : |x[l; < 1} is open in (X, d,), there exists a real number r > 0 such that By, (0,7) C
By, (0,1). In other words,
|x]; <1 whenever |x|, <.

Now given any x € X with x # 0, lety = (r/|[|x|;)x € X so that |y|; = r. Then we have
I(r/ 1 xl)xl, < 1, ie., [x], < Lx];. Soweset p =1/r > 0to get|x|, < B|x[l;, Vx € X.
Similarly, since By, (0,1) = {x € X : |x[|, < 1} is open in (X, d;), we can find a positive real
number « > 0 such that a|x|; < |x|,, ¥ x € X. This completes the proof. O

Exercise 1.2.15. Let X be a vector space over R or C. Two norms |-||; and |-||, on X are said to

be equivalent if there exist positive real numbers &, § > 0 such that
afxly < flxly < Bllxly, ¥ x € X.

Show that norm equivalence on X is an equivalence relation.
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Example 1.2.16. For any real number p > 1, we show that the /,-metric on R" is equivalent to

the (o-metric on it. Indeed, given any point (x1,...,x,) € R" note that

(x1, -, 20) |l = max{|x1], ..., |xn|}
< (lal + o+ )
= x1, ),
< np max{|x1,..., |xa|}
= n%“(xl,. s Xn) [l o-
Therefore, ¢ p-norm on R" is equivalent to the {o-norm on it, and hence the metrics induced by

them on R” are topologically equivalent. As a result, for any real numbers p, g > 1, the metrics

on R" induced by the £,-norm and the £;-norms on it are topologically equivalent.

The following results shows that any two norm induced topologies on a finite dimensional
vector space are the same. We need notion of compact set, continuous maps and some related

results to prove the following lemma. So you may skip it for the first reading.

Lemma 1.2.17. Any two norm-induced metrics on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space over R or C. Without loss of generality we
may assume that X = C", for some n € IN. Let ||-| be a norm on X. It suffices to show that |-
is equivalent to the /;-norm |-, on C". Letz = (z1,...,2,) = z161 + - - - + zne, € C" be given.
Then

n n
Izl < ) Izjllejll < <Z ||€j||> [%2-
j=1 j=1
n
Setting M = Y. |e;| > 0, we have
=1
|zl < Mlz],, VzeC"

Since
el =Tyl < lx =yl < Mlx =yl Yx,y €X,

the map x — |x|| from the C" equipped with the ¢;-norm into R is continuous.

Let
S'= {xeX: x|, =1}

be the unit sphere in X with respect to the £,-norm. Note that 81 is closed and bounded, and so
it is compact. Then the continuous map x — | x| attains a minimum value at some point, say
xp € S!. Then |x| > ||xo],V x € S!. Let K := |xg| > 0. Since ||xo|, = 1, it follows that xo # 0
and that K > 0. Now for given x € X \ {0}, we have ||x|/|x|, = |x/]|x],|| > K, and so

Klxl, < <], ¥ x € X.

This completes the proof. O
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Proposition 1.2.18. Let (X, d) be a metric space. Defineamap d : X x X — R by
d(x,y) := min{d(x,y),1}, Vx,y € X.

Then d is a metric on X topologically equivalent to d. The metric d is called the standard bounded
metric on X corresponding to d.

Proof. Clearly d(x,y) >0, V x,y € X, with equality holds if and only if x = y. Also d(x,y) =

d(y,x), ¥ x,y € X. To check the triangle inequality:
d(x,y) <d(x,z)+d(z,y), Vx,y,z €X,

note that if d(x,z) + d(y,z) > 1, then the inequality follows. Assume that d(x,z) +d(y,z) < 1.
Then from the triangle inequality for d, we have d(x,y) < d(x,z) +d(y,z) < 1, and hence
d(x,y) = d(x,y). Since d(x,z) = d(x,z) and d(y,z) = d(y, z) in this case, the triangle inequality
for d follows.

To show that d is topologically equivalent to d, let U be any non-empty open subset of
(X,d). Let a € U be given. Then there exists r > 0 such that B;(a,7) C U. Let 6 = min{r,1}.
Since

B(a,6) = By(a,0) C By(a,r) C U,

we see that U is open in (X,d). Conversely, if U is open in (X,d), then given a point a € U,
there exists 7 > 0 such that B;(a,7) C U. Then choosing 6 = min{r, 1}, we see that

By(a,d) = B(a,d) C B(a,r) C U,

and hence U is open in (X, d). This completes the proof. O

Corollary 1.2.19. Boundedness of a subset in a metric space is not a topological property.

Given an index set ] and a non-empty set X, let X/ := Map(], X) be the set of all set maps
from ] to X. If x € X/, for each a € ] we denote by x, the element x(a) € X.

Exercise 1.2.20 (Uniform metric). Let (X, d) be a metric space. Given a non-empty index set |
and points x,y € X/ := Map(], X), we define

dy(x,y) :=sup{d(xa,ya) : € J},

where d is the standard bounded metric on X corresponding to the metric d. Show that d,, is a
metric on X/, called the uniform metric on X/ induced by d, and the topology on X/ induced
by the uniform metric d,, is called the uniform topology.

Answer: Let x,y € X/ be given. Since d(x,,yx) >0, V& € ], we have

0 < d(xy,ya) = min{d(xs,ya),1} <1, Va €],
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and hence 0 < d,(x,y) := sup{d(xs,ys) : 2 € J} <1, Vx,y € X). Clearly d,(x,y) = 0 if and
only if x, = y,, V & € ], if and only if x = y in X/. To check triangle inequality, let x, y,z € X/
be arbitrary. Since d is a metric on X, we have

d(xa,Ya) < d(xa,za) + d(Yarza), Va € J.
<dy(x,z)+du(y,z), Ya €.

Taking supremum over & € |, we have Hu(x,y) <d,(x,z)+ Hu(y,z), Vx,yz€ XJ. Therefore,
d,, is a metric on X/. ]

Proposition 1.2.21. Consider the real line R with the standard Euclidean metric on it. Fix a non-empty
set ], and consider the set R/ := Map(],R). Then the uniform topology on R/ is finer than the product
topology and coarser than the box topology; these three topologies are all different if | is an infinite set.

Proof. Let 1y, T, and T, be the uniform topology, box topology and the product topology on X/,
respectively. We show that 7, C 7, C 75; and all such inclusions are strict if | is infinite.

Let x € X/ be given. Let [] V, be a basic open subset of (X/, 7,,) containing x. Then V} is an
we]

open subset of (X, d) containing x,, forallw € |, and that V,, # X, foralla € {aq,..., a0} C J.
Foreachi € {1,...,n}, there exists ; > 0 such that

B5(x4;,0;) € Vi, Vi=1,...,n
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Chapter 2

Point Set Topology

2.1 Topological space

A topology on a set X is given by specifying which subsets of X are ‘open’. Naturally those
subsets should satisfies certain properties as we are familiar from basic analysis and metric

space courses.
Definition 2.1.1. A topology is on a set X is a collection T of subsets of X satisfying the following
properties:

(i) @and X arein T,

(ii) for any collection {Uy }4ea of objects of T, their union | U, € T,
aEA

n
(iii) for a finite collection of objects Uj, ..., U, € T, their intersection (" U; € T.
i=1

The pair (X, 7) is called a topological space, and the objects of T are called open subsets of (X, T).
For notational simplicity, we suppress T and denote a topological space (X, T) simply by X.
Joke: An empty set may contain some air since it is open!
Remark 2.1.2. One can also define a topology on a set X by considering a collection 7. of subsets
of X such that
(i) both @ and X are in 1,

(if) T is closed under arbitrary intersections, and

(iii) T is closed under finite unions.
This is known as the closed set axioms for a topology. In this settings, objects of 7, are called closed
subsets of X. Itis easy to switch between these two definitions by taking complements of objects

of T and 7 in X. However, unless explicitly mentioned, we usually work with open set axioms

for topology.
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Example 2.1.3. (i) If X = @ then 7 = {@} is the only topology on @.

(i) For any set X, Tgisc := P(X) and Tyiy := {D, X} are topologies on X, called the discrete
topology and the indiscrete topology on X, respectively. Note that, Tgis.(X) and Ty (X) are
different if X has at least two elements.

(iii) Let X # @, and let T = {A € P(X) : X\ Ais finite}. Then (X, 7) is a topological space;
such a topology is called the cofinite topology on X.

(iv) Consider the set R". Let 7£(R") be the set of all subsets U C R" such that given any

x € U there exists a real number r > 0 such that
B(x,r):={yeR": |x—y| <r} CU.

Then the set 7 (IR") is a topology on R" (verify!), called the standard topology or the Eu-
clidean topology on R".

(v) Any metric space (X, d) is a topological space where the topology on X is given by the
collection of all open subsets of (X, d).

Let (X, T) be a topological space. Given a subset Y of X, let
w:={UNY:Ue€ T}

Clearly @,Y € ty. Let {Ay}aen be a family of elements of Ty. Then for each « € A, we have

Ay =UyNY, forsome U, € 7. Then U Ay = U (U, NY) = ( U U,x> NYern.lfVy, ;€
xEA xEA aEA
Ty,thenV; = UjNYand Vo, = U, NY, forsome Uy, Uy € T. Then VNV, = (U1 ﬂLb)ﬁY € Ty.

Therefore, Ty is a topology on Y, called the subspace topology on Y induced from (X, 7).

Example 2.1.4. (i) Consider the real line R with the Equipped with the Euclidean topology
on it. Then the set Q inherits a subspace topology where a subset U C Q is open if and
only if U = V N Q, for some open subset V of IR.

(ii) The subspace topology on Z induced from the Euclidean topology on RR is discrete topol-
ogy on Z.

(iii) Consider Y = [0,1) C RR. Note that open subsets of Y in the subspace topology induced
from R are of the form U N [0, 1), for some open subset U of R. Note that [0,1/2) is open
in Y, but notin R.

Exercise 2.1.5. Are the subspace topology on the unit circle S! in the Euclidean plane R? and
the metric subspace topology on S! induced from the Euclidean metric on R? the same?

Proposition 2.1.6. Let Y be a subspace of a topological space X. If U C Y is open in'Y, and Y is open
in X, then U is open in X.

Proof. Since U is openin Y, U = Y NV, for some open subset V of X. Since Y is open in X,
U=YNVisopenin X. O

Proposition 2.1.7. Let Y be a closed subspace of X. If Z C Y is closed in Y, then Z is closed in X.
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Proof. Note that, X\ Z = (X \ Y)U (Y \ Z). Since Y is closed in X, X \ Y is open in X. Since Z
isclosedin Y, Y\ Zis openin Y, and hence Y \ Z = U NY, for some open subset U of X. We
claimthat X\ Z = (X\Y)UU.SinceY\Z=UNY C U,wehave X\ Z C (X\Y)UU. Again,
sinceZ CYand Y\ Z =UNY,wemusthave U C X\ Z. Therefore, X\ Z = (X\ Y)UU, and
hence X'\ Z is open in X, which in turn gives that Z is closed in X. O

Exercise® 2.1.8 (Zariski topology). This exercise is for readers familiar with basic theory of
commutative rings, and is not required for this course. Let A be a commutative ring with
identity. Let Spec(A) be the set of all prime ideals of A, known as the spectrum of A. For each
subset E C A, let

V(E) := {p € Spec(A) : E C p}.

Prove the following.

(i) V(A) =@ and V(0) = Spec(A).
(i) V(E) = V(a), where a C A is the ideal generated by E C A.
(iii) V(a) UV(b) = V(anb) = V(ab), for all ideals a, b of A.
iv) N V(a;) = V(U a;) = V(L a;), for any collection of ideals {a; : i € I} of A.
i€l i€l i€l
(v) Conclude that the collection {V(a) : a is an ideal of A} satisfies axioms for closed subsets

of a topological space. The resulting topology on Spec(A) is called the Zariski topology on
Spec(A).

(vi) For any ideal a of A, show that Spec(A/a) is homeomorphic to the closed subspace V(a)
of Spec(A).

(vii) Let X be a topological space. A point ¢ € X is said to be a

(a) closed point of X if {&} = {¢}, and
(b) generic point of X if {¢} = X.

If A is an integral domain, show that Spec(A) contains a unique generic point, which is
precisely the zero ideal of A.

(viii) Show that the Zariski topology on Spec(A) is not even T1 let alone be it Hausdorff.
(ix) Show that, a point m € Spec(A) is closed if and only if m is a maximal ideal of A.

(x) Let k be an algebraically closed field, e.g., k = C, and let A = k[x1, ..., x,], the polynomial
ring over k with variables x1, . .., x,. Use Hilbert’s Nullstellensatz to show that the set of
all closed points of Spec(A) is in bijection with the set k" := {(ay,...,a,) 1 a; € k, Vi €

{1,...,n}}.

(xi) Let k be an algebraically closed field; for example, k = C. Fix a subset S C A :=
k[x1,...,xn], and let ag C A be the ideal generated by S. Show that the set

Z(8):={(ay,...,an) €K": f(ay,...,ay) =0,V f € S}

is in bijection with the set of all closed points of V(ag) C Spec(A).
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The space Spec(A) carries rich algebro-geometric structure. They are called affine schemes, and
are building blocks of all schemes in the sense that any scheme is build up suitably gluing affine
schemes.

Definition 2.1.9 (Basis). Let (X, T) be a topological space. A subset B C 7 is said to be a basis
for the topology 7 on X if given any U € 7 and any x € U, there exists an element V € B such
that x € V and V C U. The elements of B are called basic open subsets of X.

Remark 2.1.10. For some technical reason we include the empty subset @ of X in a basis for X.

Example 2.1.11. (i) If 7 is the discrete topology on X, then B = {{x} : x € X} is a basis for
(X, 7).

(i) Let B be the set of all open intervals (a,b) C R, where a < b. Then B is a basis for the
Euclidean topology on R.

(ili) Let (X,d) be a metric space. Then B = {B(x,r) : x € X, r > 0} is a basis for the metric
topology on (X, d).

Lemma 2.1.12. Let B be a basis for a topological space (X, T). Then

(i) U V=X, and
veB

(ii) any non-empty open subset of X is a unions of members from 3.

Proof. (i) Follows from the Definition 2.1.9 by taking X = U € 7.

(ii) Since B C 7 and 7 is closed under arbitrary union, it remains to show that any U € 7 can be
written as a union of members of B. Let U € 7 be arbitrary. Since B is a basis for the topology
T on X, for each x € U there is a basic open subset V, € B with x € Vy such that V, C U. Then

U= U Vi. This completes the proof. O
xel

Proposition 2.1.13. Let B be a basis for a topological space (X, 7). Let Y C X. Then By :={VNY:
V € B} is a basis for the subspace topology on Y.

Proof. Since B is a basis for (X,7),wehave |J V=X.Then | (VNY)=Y.LetUNY € &y

veB veB
and y € UNY. Then there exists V € Bsuchthaty € V C U. Theny € VNY C UNY.
Therefore, By is a basis for the subspace topology 7y on Y. O

Proposition 2.1.14 (Topology generated by a basis). Let X be a set. Let BB be a collection of subsets
of X satisfying the following properties.

i U V=X and
veB

(ii) given any V1,Vo € B and a point x € V1 N Vy, there exists a W € B such that x € W and
WCVvinw,.

Then there is a unique topology T3 on X such that B is a basis for tz. Such a topology 13 on X is called
the topology generated by B.
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Proof. Take
15 :={U € P(X) : foreach x € U, 3 Vy € Bsuch thatx € Vy C U}.

Clearly @ and X are in 3. Let {Uy }4c A be any collection of objects from 13, and letx € |J U,.
aEA
Then x € U,, for some A € A. Then by construction of 15 there exists a V, € B such that

xeVyCU,,andhencex € V, C | U,. Thus U U, € 15. Let Uy, Uy € T5. Letx € U3 NU>
aEN aEN
be arbitrary. Then there exist V;,V, € Bsuch thatx € V; C Uj; and x € V, C Up. Then by

property (ii) of B, there exists a W € B suchthat x € W C Vi NV, C Uj NU,. Therefore,
Uy NU; € 15. Thus, 15 is topology on X. It follows from the definition of 75 that B is a basis
for (X, 13).

Let 7 be a topology on X such that B is a basis for 7. Let U € T be arbitrary. Then given
any x € U, there exists a V € B such thatx € V C U. Then U € 13 by construction of 7.

Therefore, T C t5. Conversely, let U € 15 be arbitrary. Then U = |J Vi, where V, € B
xel
with x € V, C U, by Lemma 2.1.12. Since B C t and T is closed under arbitrary union of its

elements, U € 7. Therefore, 73 C 7, and hence 13 = 7. This proves uniqueness part. O
Proposition 2.1.15. Let B and BB’ are bases for the topologies T and t' on X. Then the following are
equivalent.

i tCt,

(ii) given V € Band x € V, there exists V' € B’ such that x € V' C V.

Proof. (i) = (ii): Suppose that T C v’. Let V € B and x € V be given. Since B C v C v/ and B’
is a basis for 7/, there exists a V' € B’ such thatx € V/ C V.

(ii) = (i): Let U € T be arbitrary. Since B is a basis for 7, by Lemma 2.1.12 we have U

U Vi, where Vi € B with x € Vy C U. Then by (ii) there exists Wy € B’ such that x € Wy C

xel

Vi, forallx € U. ThenU = |y W, € T'.
xel

Example 2.1.16. Given a,b € Rwitha < b, let [a,b) := {t € R :a < t < b}. Let By =
{[a,b) CR:a,b € Rwitha < b}. Note that B, is a basis for a topology 7, on R, called the
lower limit topology on R. We denote by R, the topological space (R, 7y). Leta,b € Rwitha < b
and letc € (a,b). Thenc € [c,b) C (a,b). Then it follows from Proposition 2.1.15 that 7z C 1y,
where Tz is the Euclidean topology on R. Fix a,b € R witha < b. Then a € [a,b), but there is

O

no open interval (¢,d) in R such that a € (c,d) C [a,b). Therefore, 1, is strictly finer than the
Euclidean topology on IR.

Example 2.1.17 (K-topology). Let K = {1 : n € IN}. Let Bx be the set of all open intervals in
R along with the subsets of the form (a,b) \ K, where a,b € R with a < b. It is easy to check
that By is a basis for a topology Tk on R which is strictly finer than the Euclidean topology on
R. The topology Tx on R generated by Bk is called the K-fopology on R. Note that (—1,1) \ K is
open in the K-topology on RR, but not in the Euclidean topology on IR because there is no open
interval (a,b) containing 0 and contained in (—1,1) \ K.
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Exercise 2.1.18. Show that the lower limit topology and the K-topology on R are not compara-
ble in the sense that neither 7, C ¢ nor 7 C 1.

Let X be a non-empty set and let P(X) be the power set of X. Let S C P(X) be such that

U V = X. Then we can use S to construct a topology on X as follow: let B C P(X) be the
veS
set of all finite intersections of elements from S. Note that S C Bandso |J V = X. Let

veB
m n
V,W € B be arbitrary. Then V = Viand W = N W, forsome Vy,...,Vyu, Wy,..., W, € S.
j=1 k=1
m n
Then their intersection VAW = [ N V; | N ( N Wk) is again a finite intersection of elements
j=1 k=1

from &, and hence is an element of B. Therefore, B is a basis for a topology 75 on X, called the
topology generated by the subbasis S. This motivates us to define the notion of subbasis for a
topological space as follow.

Definition 2.1.19. Let X be a topological space. A set S C P(X) of subsets of X is said to be a

subbasis for the topology on X if |J V = X and the collection B of all finite intersections of
ves
elements of S forms a basis for the topology on X.

Example 2.1.20. (i) The collection S := {(—c0,a) : a € R} U{(b,0) : b € R} is a subbasis
for the Euclidean topology on IR.

(i) The collection Sy := {(—o0,a) : a € R} U {[b,00) : b € R} is a subbasis for the lower limit
topology on R.

(ili) The collection S := {[a,b] : a,b € R, a < b} is a subbasis for a topology T on R, where T
is strictly finer than the Euclidean topology on RR. Is T discrete?

2.1.1 Order topology

Let (X, <) be a simply ordered (i.e., totally ordered) set. Given a,b € X with a < b, there
are four types of subset of X that are called intervals determined by a and b, namely

b):={xeX:a<x<b},
[a,b] :={xe X:a<x<b},
b):={xeX:a<x<b},
(a,b] :={x e X:a<x<b}.

Let B be the set of all subsets of X of the following forms

(i) all open intervals (a,b) in X,
(ii) all intervals of the form [ag, b), where 4y is the smallest element, if exists, of X,

(iii) all intervals of the form (a, by|, where by is the largest element, if exists, of X.

Then the collection B is a basis for a topology on X, called the order topology on (X, <).
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Example 2.1.21. The Euclidean topology on R is the order topology on it.

Exercise 2.1.22. Consider the set R x R and give a partial order relation on it by setting (a,b) <
(c,d)ifa < corifa =candb < d. Draw intervals ((a,b), (c,d)) in R X R, for the case a < ¢,
and the case a = c with b < d.

2.2 Interior point and limit point

Let X be a topological space, and let A C X.

Definition 2.2.1. A point x € A is said to be an interior point of A if there exists an open subset
U of X suchthatx € Uand U C A.

Proposition 2.2.2. A subset A C X is open if and only if either A = O or each of the points of A are

interior points.

Proof. Since empty subset is open by definition, we may assume that A # @. If A is openin X,
given any x € A, we can take U = A so that x € U C A holds, so that x is an interior point
of A. Conversely, suppose that each point x € A is an interior point. Then given a € A, there

exists an open subset V,; of X such thata € V; C A. Then A = |J V,. Since arbitrary union of
acA
open subsets of X is open in X, that A is open in X. O

Example 2.2.3. The subset (2,b) := {x € R:a < x < b} is open in the Euclidean space R, and
hence all of its points are interior points.

Example 2.2.4. Consider the subset A = [0,1) of R. Note that any point of A other than 0 is
an interior point of it when the real line is equipped with the Euclidean topology or the lower
limit topology. However, 0 € A is not an interior point of A if R is equipped with the Euclidean
topology, but if we equip R with the lower limit topology, then 0 is an interior point of A in R,.

Definition 2.2.5. A point x € X is said to be a limit point of A C X if given any open subset U
of X containing x, there exists an element 2 € A such thata # x and a4 € U; in other words,

(UN{x})NnA#.

Proposition 2.2.6. Let X be a topological space, and let Z be a non-empty subset of X. Then Z is closed
in X if and only if it contains all of its limit points.

Proof. Suppose that Z is closed in X. If x ¢ Z, then x is in the open subset U = X \ Z, and that
(U\ {x})NZ = @. Then x cannot be a limit point of Z. Conversely, suppose that Z contain
all of its limit points in X. Let U = X\ Z. If U = @, then Z = X, and hence it is closed in X.
Assume that U # @. Then given any x € U, x is not a limit point of Z. Then there exists an
open subset Vy of X such that

(Vi\{x})nz=0.

Since x ¢ Z, we have VN Z = @. Then V, C U = X \ Z. Therefore, x is an interior point of U.
Thus, U is open in X, and hence Z is closed in X. O
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Proposition 2.2.7. Let X be a topological space. Given a subset A of X, let
Cp:={ZCX:ACZandZisclosed in X}

be the set of all closed subsets of X containing A. Then [\ Z is the smallest closed subset of X

VAS )
containing A. We call (| Z the closure of A in X, and denote it by A.
VASSN
Proof. Clearly AC (| Z.Since X\ | N Z]) = U (X)\Z)isopenin X by definition of a
VA VA A
topological space, the subset (| Zisclosed in X. If W is any closed subset of X with A C W,
VAS
then W € €4, and hence (| Z C W. This completes the proof. O
ZE%”A

Lemma 2.2.8. Let X be a topological space and let A C X. Then A = AU A’, where A’ is the set of
all limit points of A in X. In particular, x € A if and only if given any open subset V of X containing
x, we have VN A # Q.

Proof. Let € be the set of all closed subsets of X containing A. Since A = (| Z,wehave A C
VAS N

A. Let x € A’ be arbitrary. Let Z € €4. If x ¢ Z, then V := X \ Z is an open neighbourhood
of x in X, and so VN A # @. But this is not possible since A C Z by assumption. Therefore,
x€Z,YZ¢€%C,andhence AUA" C Z, VZ € 64. Therefore, AU A’ C A. Conversely, let
x € A be arbitrary. Suppose that x ¢ A. Let U be an open neighbourhood of x in X. O

2.3 Continuity

Let (X, dq) and (Y, d,) be metric spaces. Recall thata map f : (X,d1) — (Y, d,) is said to be
continuous at xo € X if for given any € > 0, there exists 6 > 0 such that

dy(f(x0), f(x)) <€, whenever dq(xp,x) <.

If f is continuous at every point of X, then we call f a continuous map. This motivates us
to extend the notion of continuity of maps between arbitrary topological spaces by replacing
open balls with open subsets. Here is the formal definition.

Definition 2.3.1 (Continuous map). Let X and Y be topological spaces. Amap f : X — Y is
said to be continuous at xo € X if for each open subset V of Y containing f(xp), there exists
an open subset U of X such that xyp € U and f(U) C V. We say that f is continuous if it is
continuous at every point of X.

Lemma 2.3.2. Let f : X — Y be a map of topological spaces. Then f is continuous if and only if for
given any open subset V of Y, the subset f~1(V') is open in X.

Proof. Suppose that f is continuous. Let V be any open subset of Y. If f~1(V) = @, we have
nothing to check. Assume that f =1 (V) # @. Let xg € f~!(V) be given. Then f(x) € V. Since
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f is continuous at xy, there exists an open subset U of X with xg € U such that f(U) C V. Then
U C f~1(V) with xg € U, and so x is an interior point of f (V). Since xg € f~1(V) is chosen
arbitrarily, f~1(V) is open in X by Proposition 2.2.2. Converse is obvious. O

The following result shows that to check continuity of a map it suffices to show that inverse
image of every basic open subset is open.

Corollary 2.3.3. Let X and Y be topological spaces. Let By be a basis for the topology on Y. Then a
map f : X — Y is continuous if and only if given any basic open subset V. € By of Y, its inverse image
FH(V) is open in X.

Proof. If f is continuous, then f~!(B) is open in X, for any basic open subset B of Y. To show

the converse, let U be any open subset of Y. Then by Lemma 2.1.12, U = |J By, for some
aeEN

collection {B, : @ € A} of basic open subsets of Y. Since f~!(B,) is open in X by assumption,
the subset f~1(U) = U f~!(B,) is open in X. Therefore, f is continuous. O
KEA

As an immediate consequence of Lemma 2.3.2, we have the following.

Corollary 2.3.4. Let X be a non-empty set together with two topologies 71 and 1. Foreach j = 1,2, let
Xj = (X, T;) be the topological space whose underlying set is X and the topology is T;. Then T, is finer
than 7y (i.e., 11 C 1) if and only if the identity map Idy : Xp — X is continuous.

Example 2.3.5. Let R be the real line with the Euclidean topology on it, and let IR; be the real
line with the lower limit topology on it. Since any open interval (4, b) in R can be written as

(a,0) = | [a—l,b),

n
nelN

and each of [a — 1, b) are open in IRy, it follows that (a,b) is open in R,. However, [a, b) is open
in Ry but not in R. Therefore, the lower limit topology on the real line is strictly finer than the
Euclidean topology on it. Then by Corollary 2.3.4, the identity map IR, — R is continuous,

while the identity map R — IR, is not continuous.
Lemma 2.3.6. Let X and Y be topological spaces and let f : X — Y be a map. Then the following are
equivalent.

(i) f is continuous.

(ii) for every closed subset Z of Y, f~1(Z) is closed in X.

(iii) f(A) C f(A), forall A C X.

Proof. (i) = (ii): Let Z be a closed subset of Y. Then Y \ Z is open in Y. Since f is continuous by
assumption (i), f~1(Y'\ Z) is open in X. Since f~1(Y \ Z) = X \ f~1(Z) (verify!), we conclude
that f~1(Z) is closed in X.
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(i) = (iii): Let A C X. Since f(A) is closed in Y by Proposition 2.2.7, f~1(f(A)) is closed

in X by assumption (ii). Since

AC fHf(A)) C fH(fF(A),

and A is the smallest closed subset of X containing A, we have A C f~1(f(A)). Therefore, we

have f(A) C f(A).
(ili) = (i): Let V be a non-empty open subset of Y. Since Z := Y\ V is closed in Y, we
have Z = Z by Proposition 2.2.7. Apply assumption (iii) to the subset A := f~1(Z) C X to get

f(A) C f(A). Since f(A) = f(f1(Z)) C Z, we have

f@A) CFACZ=2.
Then A C f_1 (Z) = A, and hence A = A. Then A is closed in X by Proposition 2.2.7. Since

A=fHZ)=fY\V) =X\ fU(V),
we see that f (V) is open in X. Therefore, f is continuous. O

Definition 2.3.7. Let X be a topological space.

(i) A collection {V; : i € I} of open neighbourhoods of a € X is said to be a local basis for
X at a € X if for given any open neighbourhood U of a in X, there exists i € I such that
vicu.

(ii) A topological space X is said to be first countable if there exists a countable local basis for
X at each points of X.

(iii) A topological space X is said to be second countable if there exists a countable basis for the

topology on X.

Example 2.3.8. (i) Any second countable space is clearly first countable.

(ii) The real line R with the standard topology is second countable. Indeed, the collection
{(a,b) : a,b € Q with a < b} is a countable basis for the topology on RR.

(iii) Any metric space (X, d) is first countable. Indeed, for each a € X, the collection {B;(a,1/n) :
n € IN} is a countable local basis for the metric topology on X at a. However, it need not

be second countable. For example, one can take the discrete metric on an uncountable set.

Example 2.3.9. The lower limit topological space IR is first countable, but not second count-
able. Indeed, for each a € R, the collection {[4,x) : x € Q with a < x} is a countable local
basis for R, at a. Suppose that 3 be a basis for the topology on R,. For each x € R, the subset
Vy := [x, 00) is an open neighbourhood of x in R, and hence it contains an element, say Vy € B.
Since inf(Vy) = x by construction, we see that x # y in R implies that Vy # Vy. Therefore, the

collection B must be uncountable.

Remark 2.3.10. Let X be a topological space. Let B := {U}, : n € IN} be a countable local basis
for X ata € X. Foreachn € IN, let V,, := F] U;. Then the collection {V},, : n € IN} is a countable
local basis for X at a satisfying V11 C v,i,:1v n € N.
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Lemma 2.3.11 (Sequence Lemma). Let X be a topological space and let A be a non-empty subset of
X. If there is a sequence (an)yeN in A converging to a point x € X, then x € A. The converse holds if
X has a countable local basis at x.

Proof. Suppose that (a,),eN is a sequence of points in A converging to x € X. Then for any
open neighbourhood V of x in X, 3ny € N such thata, € V, Vn > ny. Therefore, x € A.

Conversely suppose that x € A. If x € A, we may take the constant sequence given by
a, = x, V. n € N. Suppose that x ¢ A. Then x is a limit point of A. Let {V,, : n € IN} be

n
a countable local basis for X at x. Note that, for each n € N, the subset U,, := ‘ﬂ V; is an

open neighbourhood of a in X, and satisfies U, .1 C Uy, for all n € IN. Clearly {U:: n € N}
is a countable local basis for X at a. Choose a, € Uy, for all n € IN. Let O be any open
neighbourhood of x in X. Then V;; C O, for some n, and hence U, € O, for all m > n.
Therefore, a,, € O, for all m > n. Therefore, (a,),cN converges to x in X. O

Theorem 2.3.12 (Sequential Criterion for Continuity). Let f : X — Y be a map of topological
spaces. If f is continuous at a € X, then for any sequence (X,),eN converging to a, the sequence
(f (xn))nen converges to f(a) € Y. Converse holds if X has a countable local basis at a.

Proof. Suppose that f is continuous at a € X. Let (x),en be a sequence in X converging to
a. Let V be an open neighbourhood of f(a) in Y. Since f is continuous at a, there exists an
open neighbourhood U of a in X such that f(U) C V. Since (x, )N converges to a in X, there
exists nyy € N such that x, € U, V n > ny. Then f(x,) € f(U) C V, ¥V n > ny. Therefore,

(f(xn))nen converges to f(a) in Y.

For the converse part, assume that X has a countable local basis {U,, : n € N} at a. In view

n
of Remark 2.3.10, replacing U, with [ Uj, if required, we may assume that U, 1 C U,, V1 €
i=1
IN. Suppose on the contrary that there is an open neighbourhood V' C Y of f(a) for which

there is no open neighbourhood U C X of a satisfying f(U) C V. Then for each n € N,
f(Uy,) € V, and so we can choose x,, € U, such that f(x,) ¢ V. Then (x,),ecN converges to
a € X while its image (f(x,))nen does not converges to f(a) by construction. This contradicts
our assumption, and completes the proof. O

Exercise 2.3.13. Let A be a non-empty subset of a topological space. Show that the subspace
topology on A induced from X is the smallest topology on A such that the inclusion map

pa:A—=>X, a—a,

is continuous.

Answer: Since the subspace topology 74 on A induced from X is given by 74 = {UN A :
U is open in X}, given an open subset U of X, the subset Lzl (U) =UNAisinty. If T is any
topology on A such that the inclusion map 14 : A < X is continuous, then UN A € 7/, for all
open subset U of X, and hence 74 C 7' O
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Exercise 2.3.14. Show that the direct image of open (resp., closed) subset under a continuous
map of topological spaces need not be open (resp., closed). (Hint: Take f : R — R given
by f(x) = x%, V¥ x € R, and note that f((—1,1)) = [0,1). Take g : [1,00) — R defined by
g(x) = %, V x. Note that the image of the closed subset [1, o) under g is not closed in R.)

Let X and Y be topological spaces. A map f : X — Y is said to be a constant map if there
exists ip € Y such that f(x) = yp, Vx € X.
Corollary 2.3.15. Let X and Y be two topological spaces. Then any constant map f : X — Y is
continuous.
Proof. Let f(x) = yo, for all x € X. Let V be any open subset of Y. If yg € Y, then f~1(V) = X,
andifyg ¢ V, then f~1(V) = @. Therefore, f (V) is open in X, and hence f is continuous. [J

Proposition 2.3.16. Let k be the field R or C equipped with the Euclidean topology on it. Let X be a
topological space and f, g : X — k be two continuous maps. Then the maps f + g, fg : X — k defined
by point-wise addition and multiplication of real numbers,

(f +8)(x) := f(x) +g(x), Vx € X,
(f8)(x) :== f(x)g(x), Vx € X,

are continuous. Moreover, if f(x) # 0, ¥ x € X, then the map

1
X—>R, x— ——,
8 )

is continuous. The set C(X, k) of all k-valued continuous functions on X forms an k-algebra.
Proof. Suppose that f, g € C(X, k) be given. Let xg € X be arbitrary. Since f and g are continu-

ous at xp € X, given a real number r > 0 there exists open subsets U and V of X containing x
such that

|f(x) = f(xo)] <r/2,Vx e U, and
lg(x) —g(x0)| <7/2, Vx eV

Then for any x € U NV, we have

[(f+8)(x) = (f +8)(x0)| = |(f(x) = f(x0)) + (g(x) — g(x0))]
< |f(x) = f(xo)| + [8(x) — g(x0)]

r r
<s45=

5 5 r.

Therefore, f + g is continuous at x(. Since xo € X is chosen arbitrarily, f + g is continuous on
X. Similarly, one can show that f - g is continuous on X (verify!). O

Corollary 2.3.17. Let X be a topological space and f,g : X — R be two continuous maps. Then

(i) A:={xeX: f(x) <g(x)}isopenin X, and
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(ii) B:={x € X: f(x) < g(x)} is closed in X.

Proof. Since ¢ — f : X — R s continuous by Proposition 2.3.16 and since R* := {t € R: t > 0}
is openin R and R>¢ := {t € R:t > 0} is closed in R, the subset A = (g — f)~! (R") is open
in X, and the subset B = (¢ — f) ' (R>) is closed in X. O

Lemma 2.3.18. Let X,Y and Z be topological spaces. If f : X — Y and g : Y — Z are continuous, so
is their composition g o f.

Proof. Let V be an open subset of Z. Since g is continuous, g1 (V) is open in Y, and since f is
continuous, (go f) "1 (V) = f~1(g71(V)) is open in X. Therefore, g o f is continuous. O
Lemma 2.3.19. Let f : X — Y be continuous map. Given any non-empty subset A C X, equip A
with the subspace topology induced from X. Then the restriction map f| 4+ A = Y is continuous.
Proof. Since inclusion map 14 : A — X and f : X — Y are continuous, so is their composition

mapf’A:A—>Y. O

Exercise 2.3.20. Give example of maps f : X — Yand g: Y — Z of topological spaces such that
both g and g o f are continuous, but f is not continuous. (Hint: Consider a constant function).

Definition 2.3.21. Let (Y, d) be a metric spaces, and let { f, : X — Y}, be a sequence of maps
from a non-empty set X into Y. We say that (f,),en converges uniformly to the map f : X — Y
if for given any € > 0 there exists n. € IN such that

d(fa(x), f(x)) <€, Vn>neand x € X.

Theorem 2.3.22 (Uniform Limit Theorem). Let {f, : X — Y},enN be a sequence of continuous
maps from a topological space X into a metric space (Y,d). If (fu)nen converges uniformly to a map
f: X =Y, then f is continuous.

Proof. O
Definition 2.3.23. Let X and Y be topological spaces. Amap f : X — Y is said to be
(i) a homeomorphism if f is continuous and there exists a continuous map g : ¥ — X such
that go f =Idx and f o g = Idy.
(i) an embedding if f is homeomorphism onto its image f(X) C Y, where f(X) is equipped

with the subspace topology induced from Y.

Note that, a homeomorphism is a continuous bijective map of topological spaces whose
inverse is also continuous. If there is a homeomorphism f : X — Y then we say that X is
homeomorphic to Y, and expressitas X = Y.

Example 2.3.24. (i) For any topological space X, the identity map Idx : X — X is a homeo-
morphism.
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(ii) Let X be the real line R with the usual topology on it. Then for any a € R, the translation
by a map
ts: R—R, x+—=> x+a,

is a homeomorphism. Indeed, ¢, is a continuous bijective map with the continuous inverse

t_g (verify!).

(iii) Equip C and R? with the usual Euclidean topologies. Then the map f : C — R? given by
f(a+1ib) = (a,b), Va+ibeC,

is a homeomorphism.

(iv) Themap f : R — R* := {t € R: t > 0} defined by f(x) = ¢*, V x € R, is a homeomor-
phism of R onto R", where R™ is equipped with the subspace topology induced from the
usual topology on IR.

(v) Themap f: (—1,1) — R defined by

f(t) = g, Y1 E (-1,1),

is a homeomorphism (verify!), while the inclusion map ¢ : (—1,1) — R is an embedding.

Exercise 2.3.25. Equip R" with the standard Euclidean metric

1t )y o= 224+ 22,

and let B(0,7) := {x € R" : |[x|, < 1} be the open unit ball in R” centered at the origin. Show
that the map f : B(0,1) — R" given by

flx) = %Hxl\z ¥ x € B(0,1),

is a homeomorphism.

Remark 2.3.26. Note that “being homeomorphic topological spaces” is an equivalence relation
on the collection of all topological spaces. Indeed, any topological space X is homeomorphic
to itself via the identity map Idx : X — X. If f : X — Y is a homeomorphism of topological
spaces, then f~1: Y — X is a homeomorphism from Y into X. If f : X — Yand g: Y — Z are

homeomorphisms of topological spaces, then go f : X — Z is a homeomorphism.

Lemma 2.3.27 (Pasting lemma). Let X and Y be topological spaces. Let A and B be closed subsets of
X such that X = AUB. Let f : A — Y and g : B — Y be continuous maps. If f(x) = g(x), Vx €
AN B, then there is a unique continuous map h : X — Y such that h| 4 = fand h| 5=8

Proof. Uniqueness of h is obvious. To show existence, define i : X — Y by setting

) flx), if xe A,
hx) = { g(x), if xe€B.
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Since f(x) = g(x), V x € AN B, the map h is well-defined. To check continuity of #, note that

given any open subset V of Y, we have

HH V) = V) UgTHY).
Since f and g are continuous, h~!(V) is open in X. This completes the proof. O

Exercise 2.3.28 (Sheaf of continuous maps). Let X and Y be topological spaces. Let {U, : a« €
A} be an open cover of an open subset U of X.

(i) If Vis an open subset of U, for any continuous map f : U — V, show that ( fl u) ‘V = f| v

(if) Let f,g : U — Y be continuous maps such that f |Ua = g|ua, vV« € A. Show that
f(x)=g(x), Vx e U.

(iii) Let {fx : Ux = Y}aen be a family of continuous maps such that

fzx’uamuﬁ :fﬁ‘llmuﬁ' Va,peA

Show that there exists a unique continuous map f : U — Y such that f ’u = fu, Va € A
o

Exercise 2.3.29. Let (Y, <) be a totally ordered set. Given 1,1, € Y, define

. , if <y,
min{yy,yp} =4 JV L =2
v, if oy <.

Equip Y with the order topology induced by the total ordering < on Y. Given a topological
space X and continuous maps f, g : X — Y, show that

(i) V:={xeX: f(x) < g(x)}isopenin X,
(i) Z:={xe X: f(x) <g(x)}isclosed in X, and
(iii) the map h: X — Y defined by

h(x) = min{f(x),g(x)}, Vx € X,

is continuous.

Solution: (i) Let a € V be given. Then f(a) < g(a). If there is an element y € Y with f(a) <
y < g(a), then
Uy = f (=00, 1)) Ng ((y, )

is an open subset of X witha € U, C V. If thereisno y € Y with f(a) < y < g(a), then

Uy == fH (=00, 8(a))) g~ ((f(a), )

is an open neighbourhood of a in X. Let b € U], be arbitrary. Then

f(b) <g(a) and f(a) <g(b).
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Since there exists no y € Y with f(a) <y < g(a) and (Y, <) is totally ordered by assumption,
we must have f(a) < f(b). Therefore, U, C V. Thus, a is an interior point of V, and hence V is
openin X.

(i) Since V := {x € X : g(x) < f(x)} is open by part (i), we have Z = X \ V because (Y, <)
is totally ordered set. Therefore, Z is closed in X.

(iii) Since f, g : X — Y are continuous, the subsets

A= {re X f(x) < g(x)}
and B:={xe X:g(x) < f(x)}.

are closed in X by part (ii). Since (Y, <) is a totally ordered set, we have Y = A U B. Since
f,g: X — Y are continuous, so are their restriction maps

fl=fl,:A=Y and g':=g|,:B—=Y
by Lemma 2.3.19. Since 1 : X — Y is given by

"(x), if x€A,
¢(x), if xe€B,

h(x) = min{f(x),g(x)} = {

and f'| A =8 | anp We conclude by pasting lemma 2.3.27 that h is continuous. O

Exercise 2.3.30. Let X and Y be topological spaces. Let {A, : « € A} be an indexed family

of subsets of X such that X = |J As. Let f : X — Y be a map such that f|A 1Ay = Yis
aEA *
continuous, V &« € A.

(i) If {As : @« € A} is a finite collection and if each A, is closed in X, show that f is continu-

ous.

(ii) Show by an example that if {A, : « € A} is at least countably infinite collection, f need

not be continuous even if all A, are closed in X.

(iii) Anindexed family of subsets { A, : @ € A} is said to be locally finite if each point x € X has
an open neighbourhood in X that intersects A, for finitely many « € A. If {A, : @ € A}

is a locally finite family of closed subsets of X, show that f is continuous.

Exercise 2.3.31. Let X,Y and Z be topological spaces. A map F : X x Y — Z is said to be

continuous in each variable separately if the maps

Fy: X = Z, x— F(x,10),
and FxO:Y_>Z/ yHF(xoly)’

are continuous, for all xg € X and yo € Y. If F is continuous, show that it is continuous in each

variable separately.
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Exercise 2.3.32. Consider the map F : R x R — R defined by

[ F i (xy) #(0,0),
F(x'w'_{ 0 it (xy)—(00)

(i) Show that F is continuous in each variable separately.
(ii) Compute the map ¢ : R — R defined by g(x) = F(x,x), Vx € R.
(iii) Conclude that F is not continuous.

Exercise 2.3.33. Let X be a topological space. Let A C X and let A be the closure of A in X. Let
Y be a Hausdorff space and let f : A — Y be a continuous map. Show that there can be at most

one continuous function g : A — Y such that g| 2=1f

24 Product topology

Before proceeding further, let us introduce a terminology, namely category, that is a system-

atic common framework to study for various mathematical objects.

Definition 2.4.1. A category ¢ consists of the following data:

(i) a collection of objects ob(¢),

(ii) for each ordered pair of objects (X, Y) of ob(%), there is a collection Mor4 (X, Y), whose
members are called arrows or morphisms from X to Y in ¢; an object ¢ € Mory(X,Y) is
usually denoted by an arrow ¢ : X — Y.

(iii) for each ordered triple (X, Y, Z) of objects of %, there is a map (called composition map)
o:Morg(X,Y) x Morg(Y,Z) — Morg(X,Z), (f,g) — gof,

such that the following conditions hold.

(a) Associativity: Given X,Y,Z,W € ob(%), and f € Mory(X,Y), g € Morg(Y,Z) and
h € Mory(Z,W),wehaveho (go f) = (hog)o f.

(b) Existence of identity: For each X € ob(%’), there exists a morphism Idx € Mor (X, X)
such that given any objects Y, Z € ob(¢’) and morphism f : Y — Z we have foldy =

fandIdzof = f.

Example 2.4.2. (i) Inthe category of sets (Set), we consider the collection of all sets as ob(Set)
and given any two objects (i.e., sets) X and Y, we have a collection Mor g, (X, Y) which

consists of all set theoretic maps from X into Y.

(i) In the category of groups (Grp), we take ob(Grp) to be the collection of all groups and
given any two objects (groups) G and H, we take Mor g,,,) (G, H) = Hom(G, H), the set
of all group homomorphisms from G into H.
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(iii) Let k be a field. In the category of k-vector spaces (Vect,), we take ob(Vecty) to be the
collection of all k-vector spaces, and given any two objects (k-vector spaces) V and W, we
take Moy, ) (V, W) = Homy(V, W), the set of all k-linear maps from V into W.

(iv) In the category of topological spaces Top, we take ob(7op) to be the collection of all
topological spaces, and given any two objects (topological spaces) X and Y, we take
Morro, (X, Y) to be the set of all continuous maps from X into Y.

One can easily verify that all the axioms of the above Definition 2.4.3 are satisfied for each
of the above mentioned examples.

Let ¢ be a category (think of any one from the above examples).

Definition 2.4.3. The product of an indexed family of objects {X, : « € A} in € is a pair
(P, (7t : P — Xg)pen), consisting of an object P in 4 and a family of morphisms {7, : P —
Xa }aen in €, satisfying the following universal property: given any object T of ¢ and a family
of morphisms {fx : T — Xz }sea in €, there exists a unique morphism f : T — P in ¢ such
that 7ty 0 f = f,, foralla € A.

It follows from the universal property of product that, if it exists, then it is unique upto
a unique isomorphism making the above diagram commutative. Indeed, if (P, (7, : P —
Xu)wen) and (P, (7t : P — Xa)aen) are two products of an indexed family of objects { X, :
a € A} in %, then applying universal property of (P, (7tq : P — Xa)aen) for the test object
(P!, (7t} : P — X4)pen), we get a unique morphism f : P' — Psuch that myo f = 71}, Va € A.
Similarly, applying universal property of (P’, (7} : P’ — Xa)acn) for the test object (P, (7, :
P — Xu)aen) we have a unique morphism g : P — P’ such that 71 0 ¢ = 71, V& € A.

Idp
/,,,f,,>p,,,g,,>p/
Ty
7T, 7T
X

r_ ,,gif,,>p/
Idp
7T T
Xu

for all « € A, it follows from the uniqueness assertation in Definition 2.4.3 that go f = Idp:.
Similarly one can show that f o ¢ = Idp. Therefore, the product of {Xa} aeA In G, if it exists, is
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unique upto a unique isomorphism making the diagram in Definition 2.4.3 commutative. We
denote the product of { Xy }yen in € by [Thcp Xa-

Lemma 2.4.4. The product [] X, of a family of sets { X, : @ € A} exists in the category of sets.
xEA

Proof. Let
[ Xe:= {f:A—> |_|Xa|f(uc)eX,x,sz€A}.

aEA aEA
Define a map 75 : [T Xo — Xp by 715(f) = fp := f(B), V B € A. Suppose that we are given
KEA

a set T together with maps f, : T — X,, foreach o € A. Defineamap F: T — ]| X, which
aEA
sends t € T to F(t) € [] X, defined by F(t)(«) = fa(t), Va € A. Then (rry o F)(t)(a) =
xEA
o (F(t)) = F(t)(a) = fu(t), Vt € T. Therefore, 1y o F = f,, V& € A. To show uniqueness

of F, suppose that G : T — ]| X, be any map such that 7, 0 G = fi, Va € A. Then for any
a€EA
t € T, we have

G(t)(a) = 7ta(G(1)) = fult) = F(t)(a), Va €A,
and hence G(t) = F(t), V't € T. This proves that G = F. O

Theorem 2.4.5. Let Top be the category of topological spaces. The categorical product of a family of
topological spaces {X, : & € A} exists in Top, and is unique upto a unique homeomorphism in
the sense that if (P, {7ty : P — Xa}uen) and (P, {7t} : P' — Xu}ucn) are products of the family of
topological spaces {Xy : « € A}, then there exists a unique homeomorphism ® : P’ — P such that
Tty o ® = 71}, foralla € A.

Proof. Uniqueness follows from the universal property of product in a category. We only prove
existence. Let {X, : « € A} be an indexed family of topological spaces. Let 7, be the topology

on X, for all « € A. If the product ] X, exists in Top, its underlying set of points may be
aEA
described as in Lemma 2.4.4. We just need to give a suitable topology on the set [] X, that
a€EA
makes it the product in Top. First of all, we need the projection maps

e [ ] Xp— Xa
BEA

to be continuous, for all « € A. Let

S:i= U {m(Ua) : Ux € T}

aEN

Note that, 77, 1 (Uy) = 11 Upg, where Ug = Xg, for all B # a in A (here product is taken in the
BeA
category of sets). Clearly the union of all elements of S is the set X := [] X,, and hence § is
xEA
a subbasis for a topology on X. Let B be the set of all finite intersections of elements from S.

Then B is a basis for the topology on X generated by the subbasis S. A typical element of B

n
is of the form N nﬂjjl(ll“j) = J1 Ug, where Ug = Xg, forall B € A\ {aq,...,a,}, for some
j=1 BEA
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n € N. Clearly the maps 71, : J] Xg — X, are continuous by construction of topology on

BeEA
IT Xg.
BEA
Let T be a topological space, and consider a family F := {fy : T — Xu}4ea of continuous
maps from X into Xy, for all « € A. By universal property of product set X := [] Xg, there
BeA
exists a unique set map f : T — [] Xpgsuch that 7ty 0 f = fi, V& € A. To check continuity of
BeA
f, it suffices to check that f ~1(B) is open in T, for all B € B. Now a basic open subset B € B is

n
of the form B = nﬂjjl(u,xj), for some n € N. Then

j=1
1 n n
F7UBY = N F7 () (Ua)) = ) £ (Usy)
j=1 j=1
is open in T. Therefore, f is continuous. This completes the proof. O

Let 7, be the topology on X, forall « € A. Itis clear from the above construction of product

topology on [] X, that the collection
aEA

B:= { H Uy : Uy € Tx, and Uy = X, for all but finitely many o € A}
TSN

is a basis for the product topology on [] X,. However, we can further cut down B to construct
aeA
another basis for the product topology on J] X, by looking at basic open subsets of X,’s.
aEN
Indeed, fixing a basis B, for each X,, one can easily verify that the collection

B = {H Vi : Vy € ByU{X,} and V, = X,, for all but finitely many a € A}
aEN

forms a basis for the product topology on [] X,.
aEA

Proposition 2.4.6. Let X and Y be two topological spaces. Let Bx and By be bases for X and Y,
respectively. Then the collection

B::{UXVZUEBXaTIdVEBy}

is a basis for the product topological space X x Y.

Proof. We first show that Bx x By forms a basis for some topology on X x Y. Since Bx and
By are bases for X and Y, respectively, given any (x,y) € X x Y, there exist U € Bx and
V € By such thatx € Uand y € V, so that (x,y) € U x V. Let U; x V;,Uy x V, € B and
(x,y) € (Up x V1) N (Uy x V,) be given. Since (U; x V) N (Up x Vo) = (U3 NUp) x (Vi NV),
there exist U € By and V € By suchthatx €¢ U C UjNlyandy € V C Vi NV, Then
(x,y) € UxV C (U; x V)N (Up x V,). Therefore, B is a basis for a topology on X x Y.
Let A C X x Y be any non-empty open subset in the product topological space X x Y. Let
(x,y) € Abe given. Then there exist U € tx and V € 7y such that (x,y) € U x V C A. Since
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Bx and By are bases for (X, tx) and (Y, Ty), respectively, there exist U; € Bx and V; € By
suchthatx € Uy C Uandy € V; C V. Then (x,y) € Uy x V; C A. Therefore, B is a basis for
the product topology on X x Y. O

Exercise 2.4.7. Show that the product topology on IR" coincides with the Euclidean topology
on R".

Let X and Y be two sets. Let tx : X X Y — X and 7y : X x Y — Y be the maps defined by

mx(x,y) =x, VY (x,y) € X XY,
and ry (v, y) =y, V(x,y) € X x Y.

The maps 7ty and 7y are called the projection maps onto X and Y, respectively. Note that,
' (U) = U x Yand 7, ' (V) = X x V, for any subsets U C X and V C Y, respectively.

Theorem 2.4.8. Let (X, Tx) and (Y, Ty) be two topological spaces. Then the collection
Si={ng'(U): Uex}u{n, (V):V €y}
is a subbasis for the product topology on X x Y.

Proof. Since 7y '(U) = U x Y and 7y} (V) = X x V, for any subsets U C X and V C Y,
respectively, we see that S C Tx .y, where Txy is the product topology on X x Y. Since the
topology Ts generated by S consists of arbitrary unions of finite intersections of elements from
S, we have 75 C Txxy. On the other hand, every basic open subset U x V for the product
topology Tx«y can be written as finite intersection

UxV=m(U)nnr (V).

Therefore, these two topologies coincides. O

Theorem 2.4.9. Let A be a subspace of X and B be a subspace of Y. Then the product topology on
A x B coincides with the subspace topology on A x B induced from X x Y.

Proof. Let Bx and By be bases for the topologies on X and Y, respectively. Then By = {UN A :
U e Bx}and Bg = {UNA : U € By} are bases for the subspace topologies on A and B,
respectively. Then B = {(UNA) x (VNB) : U € Bx and V € By} is a basis for the product
topology on A x B. Note that Bxxy = {UxV : U € Bx and V € By} is a basis for the
product topology on X x Y. Then B/ = {(Ux V)N(AXxB) : U € Bx and V € By} isa
basis for the subspace topology on A x B induced from X x Y. Since (UNA) x (VNB) =
(UxV)N(AxB), forallU € Bx and V € By, we have B = B'. Hence the result follows. [

Lemma 2.4.10. Let X, Y and Z be topological spaces. Equip Y x Z with the product topology, and let
y : Y XZ = Yand itz : Y X Z — Z be the projection maps onto the first and the second factors,
respectively. Then a map f : X — Y x Z is continuous if and only if both my o f : X — Y and
iz o f : X — Z are continuous.
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Proof. If f is continuous, then 7y o f and 77 o f are continuous by Lemma 2.3.18. Conversely,
assume that both ty o f : X — Y and 7tz o f : X — Z are continuous. Then for given any open
subsets U C Y and V C Z, the subsets (7ry o f)~!(U) and (717 o f)~'(V) are open in X. Then
the subset

FFAlUxv)={xeX: f(x) eUxV}

={xeX:(nmyof)(x) €eUand (g0 f)(x) e V}
= (myo /)~ U) N (170 f)7H(V)

is open in X. Since a basic open subset of Y x Z is of the form U x V, where U and V are open
subsets of Y and Z, respectively, it follows from Corollary 2.3.3 that f is continuous. O

Corollary 2.4.11. Let f1 : X1 — Yy and fo : Xo — Y5 be maps of topological spaces. Equip X1 x Xp
and Y1 x Y, with the product topologies. Then the map f1 X fo : X1 X Xp = Y7 X Y, defined by

(f1 x f2)(x1,%2) = (f1(x1), f2(x2)), V (x1,%2) € X1 X Xp,

is continuous if and only if both f1 and f, are continuous.

Proof. Let 711 : Y1 X Yo — Yj and 73 : Y7 X Yo — Y, be the projection maps onto the first and
the second factors, respectively. Then in view of Lemma 2.4.10, it suffices to show that

7T10(f1 Xf2)1X1><X2—>Y1,
and 7T20(f1 Xf2)1X1><X2*>Y2

are continuous. Let V] and V; be open subsets of Y7 and Y>, respectively. Then

(mio(fi x £2)) '(Vh) = {(x1,x%2) € X1 x X : mi(f1(x1), fo(x2)) € Vi }
= {(x1,x2) € X1 x Xp: fi(x1) € Vi }
= f1'(1) x X,

is open in X; x Xy. Similarly, (720 (f1 x f2)) "} (V2) = X1 x f, }(V4) is open in X; x X,. This
completes the proof. O

2.5 Hausdorff space

Definition 2.5.1. A topological space X is said to be Hausdorff or, T2 or, separated* if each pair
of distinct points of X can be separated by a pair of disjoint open neighbourhoods of them. In
other words, give xq,xp € X with x; # xp, there exist open subsets Vi, V; of X with x; € V,
xp € Voand VNV, =Q@.

Lemma 2.5.2. A topological space is Hausdorff if and only if the image of the diagonal map

Ax : X = XxX, x— (x,x)

“Not to be confused with the notion of a separable topological space.
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is closed in X x X.

Proof. Suppose that X is Hausdorff. It is enough to show that U := (X x X) \ Ax(X) is open
in X x X. Since any point of U is of the form (x1,x7) € X x X with x; # x, there are open
neighbourhoods x; € V; C X, j = 1,2, such that Vi NV, = @. Then (x1,x) € V1 x V, C U,
and hence U is open.

Conversely suppose that X is separated. If x1,x, € X with x; # x, then (x1, %) € U :=
(X x X) \ Ax(X). Since U is open in X x X, there exist open subsets V1, V, C X with x; € V},
j =1,2,such that (x1,xp) € V1 x V, C U = (X x X) \ Ax(X). Then (V1 x V) NAx(X) = O,
and hence Vi NV, = @. O

Exercise 2.5.3. Let f,¢ : X — Y be continuous maps of topological spaces. If Y is Hausdorff,
show that the subset {x € X : f(x) = g(x)} is closed in X. (Hint: Look at the inverse image of
Ay(Y) CY x Y under themap (f,g) : X = Y x Y givenby x — (f(x),g(x)).)

Exercise 2.5.4. Let X and Y be topological spaces with Y Hausdorff. Let A C X be such that
A=X.If f,g: X — Y are continuous maps satisfying f| A=8

4 show that f = g.

Definition 2.5.5. Let X be a topological space. A sequence (x,),eN in X is said to converge to
a point x € X if for given any open neighbourhood U of x in X, there exists ny; € IN such that
x, €U, Vn>ny.

Proposition 2.5.6. Let X be a Hausdorff topological space. Then a sequence in X can converge to at
most one point in X.

Proof. Let (x,)nen be a sequence in a Hausdorff space X. Suppose on the contrary that (x,),cN
converge to two distinct points, say x,y € X. Since X is Hausdorff, there exist open neighbour-
hoods U and V of x and y, respectively, in X such that U NV = @. Then there exist ny;, ny € N
such that x, € U, Vn > nyand x, € V, Vn > ny. Then for ny := max{ny, ny}, we have
xp € UNV,V n > ng, which contradicts our assumption that U NV = @. Therefore, (Xn)neN
can converge to at most one point in X. O

Definition 2.5.7. Fix a topological space Z. A Z-topological space (or, a topological space over Z) is
a pair (X, f), where X is a topological space and f : X — Z is a continuous maps. Given two
Z-topological spaces (X, f) and (Y, g), a morphism from (X, f) to (Y, g) is given by a continuous
map ¢ : X = Y such that g o ¢ = f. In other words, the following diagram commutes.

N~

Definition 2.5.8. The fiber product of a family of Z-topological spaces {fy : Xo — Z}scn is a

X

pair (F, {7y : F — Xa}aen), where F is a topological space and {7ty : F — Xy }aen is a family
of continuous maps indexed by A such that

(FP1) fyomy :fﬁ omg, Va,p€EAN, and
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(FP2) Universal property: given any topological space T and a family of continuous maps {gx :
T — Xu}aen satisfying fy 0 go = fg o g, there exists a unique continuous map g : T — F
such that 77, 0 ¢ = g, forall @ € A.

T S
N
NE1E
N
N

Ty

. F Xe
I
Xz

Proposition 2.5.9. Fiber product of a family of Z-topological spaces { fo : Xo — Z}uen exists, and is
unique up to a unique homeomorphism in the sense that if (F, {7ty : F — Xa }aen) and (F',{rt}, : F' —
X tacn) are fiber products of the family of Z-topological spaces { fu : Xo — Z}ycn, then there exists
a unique homeomorphism ® : F' — F such that the following diagram commutes, for all a, p € A.

F’ 7T
AN
N
N
N\ ,
, F il Xq
"B
% l f
f
Xy R/

Proof. Uniqueness follows from the universal property of fiber product. We only show its exis-
tence. Consider the subset

F= {(xtx)aeA € H s fa(xa) = fp(xp), Va,B € A}-

acEAN

of the product [] X,, and equip it with the subspace topology induced from the product
aEA
topology on J] X,. Foreacha € A, let m, : F — X, be the restriction of the projection map
aEA

onto the a’th factor; clearly this is continuous. By construction of F, we have f, o 7ty = fg o 714,
forall a, B € A. Let T be a topological space and {gx : T — X, }aca be a family of continuous
maps such that fy 0 go = fg o gg, foralla, p € A. Defineamap g: T — F by

g(t) = (ga(t))nea € [ X

aEN

Since fy 0 ga = fpogp, foralla, B € A, it follows that g(t) € F, Vt € T, and that my 0 g =
S«, Vo € A. Uniqueness of g is clear due to the condition that 71, 0 g = s, V& € A. It remains
to show that g is continuous. For that, we take a basic open subset of F of the form

V:i=FN]] U
xEN

where U, is an open subset of X,, and that U, = X,, for all but finitely many « € A, say
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n
Uy, . .., Uy, are only proper open subsets. Then g~ (V) = ( f,.!(Uy,), and hence is open in
i=1
T. This completes the proof. O

Exercise 2.5.10. Given a topological space Z and non-empty subsets X and Y of Z, show that
the fiber product of the inclusion maps 1x : X — Zand 1y : Y — Zis XNYin Z.

Exercise 2.5.11. Let f : X — Zand g : Y — Z be continuous maps of topological spaces. If Z
is Hausdorff, show that the subset

FP(f,8) :=={(x,y) € XxY: f(x) =g(y)}

is closed in the product topological space X x Y. (Hint: Note that FP(f,¢) = (f x g) "1 (Az(Z)),
where f x g: X XY — Z x Z is the continuous map defined by (f x g)(x,y) = (f(x),g(y)),
forall (x,y) € X x Y; see Corollary 2.4.11).

Proposition 2.5.12. A topological space X is Hausdorff if and only if given any two X-topological
spaces f : U — Xand g: V — X, the subset

FP(f,8) == {(n,0) e Ux V: f(u) = g(v)}

isclosedin U x V.

Proof. If X is Hausdorff, the assertion follows by Exercise 2.5.11. For the converse part, take
U=V =Xand f = g = Idx so that FP(f,g) = Ax(X), where Ax : X — X x X is the
diagonal map. O

Exercise 2.5.13. Let Z be a Hausdorff topological space. Given a finite family of Z-topological
spaces {fx : Xy = Z|k=1,...,n}, show that the subset

PP(fl,...,fn) = {(xl,...,xn) e Xy XXXy Zf1(x1) = :fn(xn)}

is closed in the product topological space X; x --- x X,,. (Hint: We only prove for the case
n = 3; general case is similar. For n = 3, we have FP(fy, f2, f3) = (FP(f1, f2) x X3) N (X3 %
FP(fs, f3)). Since both FP(f1, f) and FP(f, f3) are closed in X; x X, and X, X X3, respectively,
by previous Exercise 2.5.11, the result follows.)

Exercise 2.5.14. Given a Hausdorff space Z, can you generalize Exercise 2.5.13 to arbitrary
family of Z-topological spaces?

2.5.1 Exercises

Ex.1 Let X be a non-empty set. Let {7, : « € A} be a family of topologies on X.

(i) Show that () Ty is a topology on X.
xEA

(i) Is U ta a topology on X? Justify your answer.
xEA

(iii) Show that there is a unique largest topology on X contained in all 7,, ¥V & € A.



38 Chapter 2. Point Set Topology

(iv) Show that there is a unique smallest topology on X containing all 7,, V & € A.

Ex.2 Let # be a basis for a topology on X. Show the topology T on X generated by 4 is
the intersection of all topologies on X that contain . Prove the same statement if % is a
subbasis for some topology on X.

Ex.3 Given a,b € Q, consider the subsets

(a,b) ={teR:a<t<b}CR,
and [a,b) ={teR:a<t<b}CR.

(i) Show that the collection B = {(a,b) : a,b € Q,a < b} is a basis for the standard
(Euclidean) topology on R.

(ii) Show that the collection B = {[a,b) : a,b € Q,a < b} is a basis for some topology
Tlf on R that is different from the lower limit topology on IR. Compare Tlf with the

lower limit topology on IR.

Ex.4 Show that the countable collection
{(a,b) x (c,d) :a,b,c,d € Q witha <bandc < d}

is a basis for the standard Euclidean topology on IR?.

Ex.5 Let (X, <) be a totally ordered set. Equip X with the order topology induced by <. Let
Y be a non-empty subset of X. Then the partial order relation < on X induces a partial
order relation <y on Y defined by

vi <yyz in (Y, <y), if y1 <yp in (X, ).

(i) Show that (Y, <y) is a totally ordered set.

(ii) Show that the order topology on R induced by the standard partial order relation
on it is the standard Euclidean topology on RR.

(iif) Show by an example that the subspace topology on Y induced from the order topol-
ogy on X could be different from the order topology on Y induced by <y.
(Hint: Consider the subset Y = [0,1) U{2} of X := R. Then Y admits two topologies,
namely the subspace topology 7y induced from the order topology on X = R, and
the order topology 7(y <) on Y induced by the partial order relation < on Y induced
from that of X. Note that, {2} = (3/2,5/2) NY is open in the subspace topology on
Y induced from X = R, while any basic open subset of (Y, 7y <)) containing 2 is of
the form

Vioi={teY:a<t<2},

for some a € Y; such a subset V;, necessarily contains a point of Y less than 2.)

Ex.6 Let X be a totally ordered set. A subset Y C X is said to be convex if for given any a,b € Y
with a < b, the interval
(a,b) ={xeX:a<x<b}
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Ex.7

Ex.8

Ex.9

Ex.10

Ex.11

Ex.12

Ex.13

Ex.14

Ex.15

Ex.16

Ex.17

Ex.18

Ex.19

is contained in Y. Let Y be a convex proper subset of X. Does it follow that Y is an interval
in X?

A map f : X = Y of topological spaces is said to be an open map if for given any open
subset U of X, its image f(U) is open in Y. Show that the projection maps

nx: XxY =X, (x,y) —x,
and Ty : X XY =Y, (x,y) —y

are open maps.

Let X be a topological space. Let A C Y C X. Equip Y with the subspace topology
induced from X. If A is closed in Y and Y is closed in X, show that A is closed in X.

Let X and Y be topological spaces. Let A and B be closed subsets of X and Y, respectively.
Show that A x B is closed in the product topological space X x Y.

Let X be a topological space. If U C X is open and A C X is closed, show that U \ A is
openin X, and A\ U is closed in X.

Let (X, <) be a totally ordered set. Equip X with the order topology. Given any a,b € X,
show that (a,b) C [a,b]. Under what conditions does equality hold?

Let A, B, and A, be subsets of a topological space X. Show that

(i) If A C B, then A C B.
(ii) AUB= AUB.
(iii) U Ax 2 U Aq. Give an example where equality fails to hold.
xEN aEA

Let X and Y be topological spaces. Let A C X and B C Y. Show that

AXxB=AxB

holds in the product space X x Y.
Show that every order topology is Hausdorff.

Let X and Y be topological spaces. Show that the product topological space X x Y is
Hausdorff if and only if both X and Y are Hausdorff.

Show that a subspace of a Hausdorff topological space is Hausdorff.
In cofinite topology on RR, to what point or points does the sequence (%)ne]N converge?
Determine the closure of (4,b) in Ry and Rg, where K = {1/n: n € N}.

Let X be a topological space. Given a subset A C X, we define the interior of A to be the
subset Int(A) consisting of all interior points of A in X, and define the boundary of A to
be the subset

Bd(A) = AN (X\ A).



40 Chapter 2. Point Set Topology

(i) Show that Int(A) NBd(A) = @ and A = Int(A) UBd(A).
(ii) Show that Bd(A) = @ if and only if A is both open and closed in X.
(iii) Show that A is open in X if and only if Bd(A) = A \ A.
(iv) If A is open, is it true that A = Int(A)? Justify your answer.
Ex.20 Find the boundary and the interior of the following subsets of IR?.
(i) A={(x0):x R}
(i) B={(x,y): x>0,y # 0}.
(i) C = AUB.
() D = {(xy): v € Q}.
V) E={(x,y):0<x?—y?> <1}
(vi) F={(xy):x#0,y <1/x}.
Exercise 2.5.15. Fix a pint p € R. Show that the map f,, : R” — R""! given by

(X1, .., %0) = (X1, ., X0, P),

is an embedding of R" into R"*! (c.f. Definition 2.3.23).

Exercise 2.5.16. Embed R" into R"*! via the map
(x1,--.,%0) = (x1,...,%,0).

Let N = (0,...,0,1) be the north pole of the unit n-sphere 5" C R"*!. Equip S" \ {N} with
the subspace topology induced from S".

(i) For each v € S", show that the straight-line joining N to v in R"*! intersects R" at a

unique point x, € R".

(i) Show that the map f : S" \ {N} — R”" given by
f(v) =xp, Yo 85",

is a homeomorphism.

2.6 Quotient space

Let’s recall the notion of quotients from algebra course. Let G be a group and H a normal

subgroup of G. Then we have a relation ~ on G defined by

g1~ g if g'gr € H.

Clearly this is an equivalence relation on G, and we have a partition of G into a disjoint union

of its subsets (equivalence classes)

G= U ¢H,
g€eG
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where ¢H = {¢’ € G: g ~ ¢’} is the equivalence class of ¢ in G, for all ¢ € G.

Now question is does there exists a pair (Q, ) consisting of a group Qand amap q: G — Q
such that

(QG1) q : G — Q is a surjective group homomorphism satisfying g(g) = g(g’) whenever
g~ g and

(QG2) given any group G’ and a group homomorphism f : G — G’ with H C Ker(f), there
should exists a unique group homomorphism f : Q — G’ such that f o g = f?

G
qi N 2.6.1)
Q

Interesting point is that, without knowing existence of such a pair (Q,q),itfollows immediately
from the properties (QG1) and (QG2) that such a pair (Q, q), if it exists, must be unique up to a
unique isomorphism of groups in the sense that, given another such pair (Q’, 4’) satisfying the
above two conditions, there is a unique group isomorphism ¢ : Q — Q' such that ¢ o g = ¢').

Exercise 2.6.2. Prove the above mentioned uniqueness statement.

Now question is about its existence. The condition (QG1) suggests that the elements of Q
should be the fibers of the map g, which are nothing but the ~-equivalence classes

gl.=1{8'€G:g'~g}=¢H, VgeG.

This suggests us to consider {¢H : ¢ € G} as a possible candidate for the set Q. Now question
is what should be the appropriate group structure on it? Take any group homomorphism
f : G — G’ such that H C Ker(f). This says that f(g1) = f(g2) if g1 ~ £ (equivalently,
S g5 € H). The commutativity of the diagram (2.6.1) tells us to send gH € Q to f(g) € G’ to
define the map f : Q — G’ (note that this is well-defined!), and since we want f : Q — G’ to be

a group homomorphism, we should define a binary operationon Q = {gH : g € G} insucha

way that (¢1H) * (¢2H) N f(g1)f(g2) = f(g182), for all g1, 82 € G. So the obvious choice is
to define

(81H) * (82H) = (g182)H, V 81,82 € G. (2.6.3)
Clearly this is a well-defined binary operation on Q = {¢H : ¢ € G}, since H is normal.

Exercise 2.6.4. Verify that (2.6.3) makes Q a group such that the pair (Q, q) satisfies the condi-
tion (QG1) and (QG2).

Exercise 2.6.5. Verify analogous stories for the cases rings and vector spaces.

We are going to witness the same phenomenon in topology! Let X be a topological space.

Definition 2.6.6. Given an equivalence relation ~ on X, the associated quotient topological space
(o, identification space) X /~ is a pair (Q, q) consisting of a topological space Q and a continuous
map g : X — Q such that
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(QT1) g is surjective and satisfies g(x) = g(x") whenever x ~ 1’ in (X, ~); and

(QT2) given any topological space Y and a continuous map f : X — Y satisfying f(x) = f(x’)
whenever x ~ x’ in (X, ~), there is a unique continuous map f : Q — Y such that

foq=Ff.
X f Y
/7
qi 7
// f
Q

The map g is called the quotient map (or, identification map) for (X, ~).

As an immediate corollary to the Definition 2.6.6, we have the following.

Corollary 2.6.7. If (Q, q) is a quotient space for (X, ~), then the topology on Q is the largest topology
on the set Q such that the map q : X — Q is continuous.

Proof. By a topology on a set S we mean a collection T of subsets of S that satisfies axioms for
open subsets in S. Suppose on the contrary that the statement in Corollary 2.6.7 is false. Then
there is a topology 7’ on the set Q finer than the quotient topology on Q such that the set map
g: X — Q' :=(Q, ') is continuous. Then by property (QT2) of (Q, g) in Definition 2.6.6, there
is a unique (continuous) map f : Q — Q' such that f o g = ¢. Since g : X — Q is surjective, it
admits a right inverse (set theoretically). This forces f : Q — Q’ to be the identity map. This
is not possible because f is continuous and the topology on Q' is finer than that of Q by our

assumption (see Corollary 2.3.4). Hence the result follows. O

Remark 2.6.8. In Definition 2.6.6, the first condition suggests what should be the underlying
set of points of Q and the map 4 : X — Q, and the second condition suggests what should be
the topology on the set Q.

Theorem 2.6.9. Given a topological space X and an equivalence relation ~ on X, the associated quotient

space (Q, q) for (X, ~) exists, and is unique up to a unique homeomorphism (i.e., if (Q, q) and (Q', q')

are two quotient spaces for (X, ~), then there is a unique homeomorphism ¢ : Q — Q' such that
/

poq=4q)

Proof. We first prove uniqueness of the pair (Q, ), up to a unique homeomorphism. Let (Q’, ")
be another quotient space for the pair (X, ~). Since 4’ is continuous and q'(x) = ¢’(y) when-

ever x ~ yin (X, ~), we have a unique continuous map §: Q" — Q such thatjoq = g.

X
q q
%//////i;\\\\\\ (2.6.10)
Qf--—-->Q----->¢
q q

Similarly, interchanging the role of (Q,q) and (Q’, §') we get a unique continuous map ¢’ : Q —
Q' such that §’ o g = ¢'. Then we have (¢’ 0§) o g’ = ¢'. Since the identity map Idy : Q' — Q'
is continuous and satisfies Idy o’ = ¢’, we must have goj = Idg. Similarly, we have
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go q = Idg. Therefore, both § and ' are homeomorphisms. Thus the pair (Q, q) is unique, up

to a unique homeomorphism.

Now (following Remark 2.6.8) we give an explicit construction of (Q, ~). For each x € X,
the equivalence class of x in (X, ~) is the subset

[x] ={xr e X:x~x} CX

Let Q be the set of all distinct equivalence classes of elements of X. Consider themap g: X — Q
defined by sending each point x € X to its equivalence class [x] € Q. Note that, the map g is
surjective. As suggested in Corollary 2.6.7, we define a topology on Q by declaring a subset
U C Q to be open if its inverse image 4! (U) C X is open in X. Clearly this makes g : X — Q
continuous. It remains to check property (QT2) as in Definition 2.6.6. Let Y be any topological
space and f : X — Y any continuous map satisfying f(x) = f(x’) for x ~ x" in (X, ~). Define
a map f:Q—=Y by f([x]) = f(x), forall [x] € Q. Clearly f is well-defined, and by its

construction it satisfies

fog=f. (2.6.11)

Since f is continuous, for any open subset V C Y, the subset

g (V) = Foq) (V) = FH(V)

is open in X, and hence f~1(V) is open in Q by definition of the topology on Q. Therefore, f is
continuous. If g : Q — Y is any continuous map satisfying goq = f, then g([x]) = (goq)(x) =
f(x), forall [x] € Q, and hence g = f. O

Theorem 2.6.12. Let X and Y be topological spaces, and let p : X — Y be a surjective continuous map.
Then the following are equivalent.

(i) The pair (Y, p) is a quotient space for some equivalence relation ~ on X.
(ii) A subset U C Y is open in Y if and only if p~(U) is open in X.

(iii) A subset Z C Y is closed in Y if and only if p~1(Z) is closed in X.

Proof. (i) = (ii) and (i) = (iii): Follow from Corollary 2.6.7.

We show (ii) = (i) and (iii) = (i) together. Consider the relation ~ on X defined by
xp~xp inX, if p(x1) = p(xz).

It is easy to see that ~ is an equivalence relation on X. Clearly p(x) = p(x’) whenever x ~ x’ in
X. Let T be a topological space and let f : X — T be a continuous map such that f(x) = f(x') if
x ~ x’in X. Since p : X — Y is surjective, for each y € Y we can choose a point x, € p~1(y) C

X by axiom of choice. Since f(x) = f(x') for all x,x' € p~!(y), we get a well-defined map
f:Y — T defined by

fly) = flxy), VyeY.
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Clearly fop=f. LetV C Tbean open (resp., closed) subset of T. Since f is continuous,
p~ 1 (f~1(V)) = f~Y(V) is open (resp., closed) in X. Then it follows from the assumption (ii)
(resp., (iii)) that f_l(V) is open (resp., closed) in Y. Therefore, f : Y — T is continuous. If
¢ : Y — T is any continuous map such that go p = f, then g(p(x)) = f(x), V x € X gives
gy) = f(y), forall y € Y. Therefore, fis the unique continuous map such that fop=f. Thus

(Y, p) is the quotient space of X by the equivalence relation ~ on X (see Definition 2.6.6). [

Remark 2.6.13. It follows from construction of quotient space in Theorem 2.6.9, and the proof
of Theorem 2.6.12 that if f : X — Y is a quotient map then the set of all fibers {f ~1(y) : y € Y}
of f gives a partition of X, and hence defines an equivalence relation ~ on X such that the
associated quotient space X/ ~ is homeomorphic to (Y, f).

Exercise 2.6.14. If f : X — Y and g : Y — Z are quotient maps, show that go f : X — Zisa
quotient map.

Exercise 2.6.15. Give an example of a quotient map p : X — Y and a topological space Z such
that p x Idz : X x Z — Y x Z is not a quotient map.

Definition 2.6.16. A map f : X — Y is said to be open (resp., closed) if f(U) is open (resp.,
closed) in Y for any open (resp., closed) subset U of X.

Exercise 2.6.17. Let f1 : X; — Y7 and f, : Xp — Y3 be two open maps of topological spaces.
Show that the product map f1 x f» : X1 X X = Y7 X Y; defined by

(fr x f2)(x1, %2) = (f(x1), fa(x2)), ¥ (x1,%2) € Xy X X,

is an open map.

Corollary 2.6.18. A surjective continuous open (ot, closed) map is a quotient map.

Proof. Let f : X — Y be a surjective map. Then for any V C Y we have f(f~}(V)) = V.
Suppose that f is also continuous and open (resp., closed). Then for any V C Y with f~(V)
open (resp., closed) in X, V = f(f~1(V)) is open (resp., closed) in Y. Hence the result follows
from Theorem 2.6.12. O

Remark 2.6.19. Corollary 2.6.18 fails without continuity assumption on f. For example, take a
set X with at least two elements. Let 7y and 77 be the trivial topology and the discrete topology
on X, respectively. Then the identity map Idx : (X, 19) — (X, 71) is a surjective open map,
which is not continuous let alone be a quotient map.

Exercise 2.6.20. Let g : X — Q be a quotient map, and let Z C Q. Show by an example that the
restriction map q|q,1 2 q-1(Z) — Z need not be a quotient map, in general. If Z is open or g
is an open map, show that the above restriction map become a quotient map.

Corollary 2.6.21. Let f : X — Y be a continuous surjective map. If X is compact (see Definition
2.11.1) and Y is Hausdorff, then f is a quotient map.
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Proof. Let Z be a closed subset of X. Since X is compact, Z is compact by Proposition 2.11.8.
Since f is continuous, f(Z) is a compact subset of Y by Proposition 2.11.11. Since Y is Haus-
dorff, f(Z) is closed in Y by Corollary 2.11.10. Hence the result follows from Corollary 2.6.18.

O

Proposition 2.6.22. Let ~ be an equivalence relation on a topological space X, and let (Q,q) be the
associated quotient space. Given a topological space Y, a map ¢ : Q — Y is continuous if and only if
the composite map ¢ o q : X — Y is continuous.

X $oq

_—
q
/

Q

Y

Proof. Since the quotient map g is continuous, the composite map ¢ o q is continuous whenever
¢ is continuous. Conversely, let ¢ o g be continuous. Since for any open subset V C Y, we have
g Y ¢~ (V)) = (pogq)~ (V) is open in X, by construction of topology of Q, the subset ¢~ (V)
is open in Q. Thus ¢ is continuous. O

Example 2.6.23. (i) Circle: Let I = [0,1] C R be the unit closed interval in R. Define a map
f:00,1] = St :={(x,y) e R?: x> + 2 =1}

by
f(t) = (cos2rit,sin27it), YVt € [0,1].

Clearly f is a surjective continuous map. Since [0, 1] is compact and S! is Hausdorff, it
follows from Corollary 2.6.21 that f : I — S! is a quotient map. Note that f~1(1,0) =
{0,1} and f~!(x,y) is singleton for (x,y) € S'\ {(1,0)}. Therefore, S! is the quotient
space of [0,1] for the equivalence relation on [0, 1] which only identify the end points of
[0,1] to a single point.

(ii) Cylinder: Let I = [0, 1] C R. Consider the unit square
IxI={(x,y) €ER*:0< x,y <1}
in R?. Define an equivalence relation ~; on I x I by setting
(x,y) ~ (¥,y), if ¥=x+1=1and y=y.

This identifies points of two vertical sides of I x I (see Figure 2.1 below), and the associ-

ated quotient space (I x I)/~1 is homeomorphic to the cylinder

S'x[0,1]={(xyz) eR:¥*+1y*=1,0<z <1}
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FIGURE 2.1

Indeed, we can define a (continuous) map
¢:IxI—S'x0,1]

by ¢(s, t) = (exp(2rtis), t), for all (s, t) € I x I. Then the set {¢~!(z,t) : (z,t) € S x
[0, 1]} of all fibers of ¢ is precisely the partition of I x I given by the equivalence relation
~1 on I x I. It follows from Corollary 2.6.21 that ¢ is a quotient map, and by Remark
2.6.13 the associated quotient space (I x I)/ ~ is homeomorphic to S! x I.

(iii) Torus: Consider an equivalence relation ~; on the cylinder S x I defined by
(z,t) ~p (Z,)ifz=2, and ¥ =t+1=1.

This identifies each point of the bottom circle of S! x I with the corresponding point of
the top circle on S! x I (see Figure 2.2 below).

@0) ~ @&
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- .~

(Z,0) o= S"x[o){\_l —>T= “SLXSL
(Zr) —> @)o:m)c)

FIGURE 2.2

Then the associated quotient space (S! x I)/~j is homeomorphic to the torus T := S! x S!
in R* (see the remark below). Indeed, we can define a (continuous) map

St x-St xs!
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(iv)

(v)

by ¥(z,t) = (z, exp(2mit)), for all (z, t) € S! x I. As before, it is easy to see that the set
of all fibers of the map 1 is precisely the partition of S! x I defined by the equivalence
relation ~, on the cylinder S! x I. As before, it follows from Corollary 2.6.21 that ¢
is a quotient map, and by Remark 2.6.13 the associated quotient space (S! x I)/ ~ is
homeomorphic to S' x S!.

Remark 2.6.24. To see the quotient space (S! x I)/ ~; is homeomorphic a torus inside
IR3, we need to use the parametric equation of a torus T in R3; this is given by the map

IxI—TCR3 (s,t)— (x(s,t),y(s,t),z(s,t)),
where

x(s,t) = (d + r cos27t) cos 27ts,
y(s,t) = (d + rcos2mt) sin27ts,

z(s,t) = rsin2rmt,

where d,r € R with 0 < r < d (here d is the radius of the circle passing through the center
of the torus tube, and r is the radius of the circular section of the torus). Then we consider
the map

Y SIxI =T

defined by
(™, 1) = (x(s,1),y(s,1),2(s,1)), Vs, t € [0,1].

Define a relation p C R xR on R by (x,y) € pif x —y € Z. Note that this is an
equivalence realtion on R. Let S! := {(x,y) € R? : x> +y?> = 1} C R?. Define a map
f:R — S'by

f(t) = (cos2rit,sin2mit), Vt e R.

Clearly f is a surjective continuous map. We show that f is an open map. For this, it
suffices to show that image of an open interval (a,b) C Ris open in S!. Let a,b € R with
a < b. Since f(t+1) = f(t), Vt € R, it follows that f((a,b)) = S'if b —a > 1. Suppose
thatb —a < 1. Let p := (x,y) € f((a,b)) be arbitrary. Then (x,y) = (cos 27rit, sin 27it),
for some t € (a,b). Taking r = min{t —a,b —t} > 0, we see that B(p,7) N S' C f((a,b))
(verify). Thus, f((a,b)) is open in S!, and hence f is an open map. Then by Corollary
2.6.18 f is a quotient map. Since the fibers of f can be identified with Z (verify!), we may
denote the associated quotient space by R/Z. Then f induces a homeomorphism of R/Z
onto St

Cone: Let I = [0, 1] C R. The cone of a topological space X is the quotient space CX :=
(X x 1)/ ~ of X x I for the equivalence relation ~ on X x I defined by

(x,t) ~ (&, 1), if t=1t =1. (2.6.25)
The associated set of all partitions of X x I is the set

{Xx{1}, {(x,)}:xeX,0<t<1}.
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(vi)

Thus we identify all points of X x {1} C X x I into a single point, called the vertex of the

v
X xTo,1] CX = Xxllo)l]//\,

Cone of X
FIGURE 2.3

cone CX, and the remaining points of X X [0, 1) remains as they are.

If X is a compact subset of an Euclidean space IR", then we can construct CX more geo-
metrically as follow. Embed R” into R"*! by the map (x1,...,%,) — (x1,...,%,,0), and
fix a point v € R""! which lies outside the image of this embedding; for example take
v =(0,...,0,1) € R"". Note that £,  := {tv+ (1 —#)x : 0 < t <1} C R""! s the
straight line segment in R"*! joining v and x € X. The subset

U K[v,x] g R?’l+1
xeX

with the subspace topology induced from R"*1 is called the geometric cone of X. We show
that the geometric cone of X is homeomorphic to the cone of X, i.e.,

cx= | Lo, -

xeX

Define a map

f:XXI—> Ug[v,x]

xeX

by f(x,t) = tv+ (1 —t)x, for all (x,t) € X x I. Clearly f is a surjective continuous map,
and f(x,t) = f(x,t') if and only if either x = x’ and t = /, or t = t' = 1. Since X is
compact and its image is Hausdorff (being a subspace of R"*1), it follows from Corollary
2.6.21 that f is a quotient map. Since the fibers of the map f are precisely the equivalence
classes for the equivalence relation on X x I defined in (2.6.25), it follows from Remark
2.6.13 that CX = (X x I)/ ~ is homeomorphic to the geometric cone of X.

The space X/ A: Let A be a subset of a topological space X. Define an equivalence relation
~ on X by

x ~ x' ifboth x and x’ are in A.
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We denote by X/ A the associated quotient space X/~. Here we collapse the subspace A
into a single point, and the remaining points of X \ A remains as they were. For example,
CX=(XxI)/(Xx{1}).

(vii) The space B"/S"~!: Consider the closed unit ball

n
B" :={(x1,...,xy) € R": Z‘ix]z <1}
]:

in R, and its boundary

n
aBn = {(xl/-'-/xn) S ]Bn . le]z = 1} — Sn—l.
j=

Then the associated quotient space is denoted by B"/S"~! is homeomorphic to S". This
is quite easy to visualize for n = 1 and 2. Forn =1, B'=[-1,1] CR,and S = {-1,1}
is its boundary. If we identify all points of S = {—1,1} into a single point and keep all
other points of B! as they were, we get a circle S! in IR?; see Figure 2.4 below.

| | | /’% /"FC")
“'L 0 1 Kf(i)

Lo ep(nic)

FIGURE 2.4

The case n = 2 is explained in the Figure 2.5 below.

@.@

FIGURE 2.5

: B/Sj‘

In general, it suffices to construct a surjective continuous map
f:B"—S"

such that f| B\ gn-1 is injective and f(S"~!) is a singleton subset of S. Then by Corollary
2.6.21, f become a quotient map producing a homeomorphism of B"/S"~! onto S". To
construct such a map f, note that R” is homeomorphic to B" \ $*~! and S" \ {p}, for
any p € S" (see Exercise 2.5.15 and Exercise 2.5.16). Fix two homeomorphisms h; : B" \
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"1 5 R"and hy : R" — S™\ {p}, and define

) ::{ (i (x)), if x€B"\s", (26.26)

P, if xes" L

It is easy to check that f has desired properties (verify).

Exercise 2.6.27. Consider the Euclidean plane X = R?. Define a relation ~ on R? by

(x1,¥1) ~ (x2,¥2), if (x1 —x2,y1 —y2) € Z X Z.

Example 2.6.28 (Attaching spaces along a map). Let X and Y be two topological spaces. Sup-

pose we wish to attach X by identifying points of a subspace A C X with points of Y in a

continuous way. This can be done by using a continuous map f : A — Y. Indeed, we identify

x € A with its image f(x) € Y. This defines an equivalence relation on X 'Y, and we denote

the associated quotient space by X LI Y, and call it the space Y with X attached along A via f. Let

us discuss some examples.

(i)

(if)

(iii)

Let I = [0,1] C R. Given a space X, we call X x I the cylinder over X. Let f : X — Y be a
continuous map of topological spaces. Then f induces a continuous map j?: Xx{0} =Y
given by

f(x,0) = f(x), ¥ (x,0) € X x {0}.
If we attach Y with the cylinder X x I of X along its base X x {0} C X x I via the map
f, by identifying (x,0) ~ f(x), then the associated quotient space M = (XxI)u FYis
called the mapping cylinder of f (see Figure 2.6).

FIGURE 2.6: Mapping Cylinder

Let CX = (X x I)/(X x {1}) be the cone over X obtained by collapsing the subspace
X x {1} of the cylinder X x I over X to a single point. Let f : X — Y be a continuous
map. If we attach this cone CX with Y along its base X x {0} C CX by identifying
(x,0) € X x {0} with f(x) € Y, then the resulting quotient space Cf = Y LIy CX is called
the mapping cone of f (see Figure 2.7). Note that, the mapping cone Cy can also be obtained
as a quotient space of the mapping cylinder My by collapsing X x {1} C My to a point.

Let X be a topological space. The suspension SX of X is the quotient space of X x I obtained
by collapsing X x {0} to one point and X x {1} to another point.

For example, if we take X to be the unit circle S' = {(x,y) € R? : x2 + y*> = 1}, then
X x Iisacylinder C = {(x,y,z) € R®: x> +y?> = 1,0 < z < 1}, and then we collapse
two circular edges of C to two points to get SX, which is homeomorphic to the 2-sphere
S2={(x,y,z) e R¥: 22 +y?>+ 22 =1}.
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FIGURE 2.7: Mapping Cone

N
FIGURE 2.8: Suspension

We can think of SX as a double cone on X: take disjoint union of two cones C; := (X x
I)/(Xx{1})and C; := (X x I)/(X x {0}), and then attach C; with C, via the continuous
map f: X x {0} — C, givenby f(x,0) = (x,0) € C, V (x,0) € X x {0} C C;.

The following exercise shows that a quotient of a Hausdorff space need not be Hausdorff
in general.

Exercise 2.6.29. Consider the two disjoint copies of real line X = R x {0, 1} C R?, and the
equivalence relation ~ on X defined by (t,0) ~ (t,1), for all t € R\ {0}. The associated
quotient space X/~ is called the real line with double origin. Show that X/~ is not Hausdorff.

Definition 2.6.30 (Local homeomorphism). Let X and Y be topological spaces. We say that X
is locally homeomorphic to Y if for each x € X there exists an open neighbourhood U, C X of
x and a continuous map fy : Uy — Y such that f,(Uy) isopenin Y and fy : Uy — fx(Uyx) isa
homeomorphism.

Remark 2.6.31. Note that if X is locally homeomorphic to Y, then Y need not be locally home-
omorphic to X.

Exercise 2.6.32 (Hausdorffness is not a local property). Define an equivalence relation ~ on the
Euclidean line R by x ~ y if either x = y or |x| = |y| > 1. Let Q := X/~ be the associated
quotient space. Show that every point z € Q has an open neighbourhood homeomorphic to
(=1,1), but Q is not Hausdorff.

Proof. Letz € Q be given. Let x € 7 1(z), where 77 : R — Q is the quotient map. If |x| < 1,
then 771(z) = {x} is singleton. O

Proposition 2.6.33. Let p C X x X be an equivalence relation on a topological space X, and let
q: X = Q := X/p be the quotient map. Then we have the following.

(i) Qisa T1 space if and only if every p-equivalence class is closed in X.
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(ii)

If Q is Hausdorff then p is a closed subspace of the product space X x X. The converse holds if
q: X — Q is an open map.

Proof. (i) Let Q be T1. Let x € X. Choose ay € X\ [x]. Then [x] # [y] in Q. Since Q is T1,

(ii)

there is an open subset V,, C Q such that [y] € V;, and [x] ¢ V. Then g~ }(V;) is an open
neighbourhood of y with ¢~ !(V}) N [x] = @. Therefore, y is an interior point of X \ [x].
Therefore, X \ [x] is open, and hence [x] C X is closed.

Conversely, suppose that [x] C X is closed, for all x € X. To show Q is T1, we need to
show that {[x]} is closed in Q, for all x € X. Since ¢~ (Q\ {[x]}) = {y € X : q(y) #
[x]} = X\ [x] is open, Q \ {[x]} is openin Q, for all [x] € Q. Therefore, Q is a T1 space.

q

Consider the commutative diagram of continuous maps
Q

qxq

XxX—=0xQ,

where g x q: X X X = Q x Q is the product map given by

(g xq)(xy) = (9(x),9(y)), V(xy) € XxX

Note that, (7 x q)"1(Ap(Q)) = {(x,y) € X x X : q(x) = q(y)} = p. If Q is Hausdorff,
then Ag(Q) is closed by Lemma 2.5.2. Since q X g is continuous, p is closed in X x X.
Now we assume that g is an open map, and that p is closed in X x X. Since q X g is a
continuous surjective open map (verify!), it is a quotient map by Corollary 2.6.18. Since
(g x q)"1(Ag(Q)) = pis closed in X x X, the diagonal Ag(Q) is closed in Q x Q by
Theorem 2.6.12 (iii). Therefore, Q is Hausdorff by Lemma 2.5.2.

O

Now we give an example to show that even if X is Hausdorff and the equivalence relation

pis closed in X x X, the associated quotient space Q = X /p need not be Hausdorff without the

assumption that g is an open map. For this, we first recall the following.

Definition 2.6.34. A topological space X is said to be normal if any two disjoint closed subsets

can be separated by a pair of disjoint open subsets containing them. In other words, given two
closed subsets A, B C X with AN B = @, there are open subsets U,V C X such that A C U,
BCVandUNV =0a.

Most of the familiar examples of topological spaces are generally normal (e.g., R"), and a

closed subspace of a normal space is normal. The following example shows that a Hausdorff

space need not be normal.

Example 2.6.35. Let K = {% :n € Z*}. Consider the topology tx on R whose basis for open

subsets is given by the collection

B ={(a,b):a,bc Rwitha <b}U{(a,b)\K:a,be Rwitha < b}.
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Clearly this topology on R is strictly finer than the Euclidean topology on R, and hence (R, 7x)
is a Hausdorff space. Note that in this topology, K and {0} are disjoint closed subsets that
cannot be separated by a pair of disjoint open subsets containing them. Therefore, (R, 7x) is
not normal.

Exercise 2.6.36. Start with a Hausdorff space X that is not normal. Choose two disjoint closed
subsets A, B C X that cannot be separated by two disjoint open subsets containing them. Take
p = Ax(X)U (A x A)U (B x B). Note that p is an equivalence relation on X, and is closed in
X x X (why?). Show that the associated quotient space X /p is T1 but not Hausdorff.

Exercise 2.6.37. (i) Let p : X — Y be a continuous map. If there is a continuous map f : ¥ —
X such that p o f = Idy, then show that p is a quotient map.

(ii) Let A C X. A retraction of X onto A is a continuous map r : X — A such that r(a) =
a, Va € A. Show that a retraction is a quotient map.
Proof. (i) Let V C Y be such that p~!(V) is open in X. Since f is continuous and p o f = Idy,
wehave V= (po f)~1(V) = f~1(p~1(V)) is open in Y. Therefore, p is a quotient map.

(ii) Let 14 : A — X be the inclusion map of A into X. Since 14 : A — X is continuous with
roiy = Id 4, that r is a quotient map by part (i). O

Exercise 2.6.38. Let 711 : R X R — IR be projection onto the first factor. Let A := {(x,y) €
RxR:x>0}U{(x,y) e RxR:y =0} Letq: A — R be the map 71| ,. Show thatgis a
quotient map that is neither open nor closed.

Proof. Let 711 : R x R — R be the projection map onto the first factor. Note that A = (RT x

R) U (R x {0}), and the restriction map 773 ‘]RX{O} :R x {0} — R x {0} is the identity map of
R x {0}. Therefore,

O

2.7 Projective space and Grassmannian'

In this section we discuss two special examples of quotient spaces, namely projective space
and Grassmannian® that naturally occurs in algebraic topology and geometry.

2.7.1 Real and complex projective spaces

Fix an integer n > 0. Define an equivalence relation ~ on R**1\ {0} by

v~vifv =10, forsome A € R\ {0}. (2.7.1)

This section §2.7 is not in the syllabus and may be skipped for examination.
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In other words, identify all points lying on the same straight-line in R"H1 passing through the

origin 0 € R"*1. Then the associated quotient space
RP" := (R"1\ {0})/~

is called the real projective n-space. As a set, RIP" consists of all straight-lines in R"*! passing
through the origin 0 € R"*1. So an element of RIP" is of the form

[ag: -+ tan):={A-(ag,...,ay) € R"™™\ {0} : A € R\ {0}}. (2.7.2)

Let g : R"*1\ {0} — RIP" be the quotient map for the projective n-space. Note that the unit n-

n
sphere S" = {(ao, ..., a,) € R"1: L ujz. = 1} is a compact connected subspace of R"*!\ {0}.

]

Since the restriction map g, : S — RIP" is continuous and surjective, RIP" is compact and

SH
connected.

Exercise 2.7.3. Prove the following.

(i) Show that the map f := ¢ gn 8" = RIP" is a quotient map.
(ii) For each ¢ € RIP", show that f~1(¢) = {v, —v}, for some v € S".

(iii) Show that RIP" is Hausdorff.

Outline of solution. Note that, the quotient map g : R"*!\ {0} — RP" is given by sending
(ag,...,an) € R"1\ {0} to the straight line

[ag:---:an] :={A(ag,...,an) : A € R} € RP".

Since RIP" consists of all straight lines in R"*! passing through the origin, given a straight-line

¢ € RP", choosing any non-zero point v := (ag,...,a,) € £, we find an element v/|v| € S"

with f(v/|v]) = ¢, where |v]| := ( i a]z)l/z. Thus, f is surjective.
=1

£o8m <SR {0} - RP”

Note that given any subset V' C RIP", we have f~1(V) = g~1(V) N S". So continuity of f
follows from that of 4. To see that f is a quotient map, suppose that f~1(V) is open in S".
To show that V is open in RIP", fix a point ¢ € V. Tts fiber f~1(¢) = {v, —v} consists of the
two antipodal points of S obtained by intersecting the line £ with S”. Since the points v and
—v lies on two hemispheres separated by a great circle on S”, we can find a small enough
(connected) open neighbourhood U C f~1(V) of v such that —U := {—u : u € U} C S"is
an open neighbourhood of —v in §”, and U N (—U) = @. Note that, —U C f (V). Then f|,,
is a homeomorphism of U onto the open neighbourhood f(U) C V of £ in RP". Thus f is a
quotient map. O
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Next we show that RIP" can be covered by 1 + 1 open subsets each homeomorphic to R".
Letp; : R"*! — R be the j-th projection map defined by

pj(xo,...,xn) =xj, V (x0,..., %) € R,
Foreachj € {0,1,...,n}, consider the hyperplane
Hj:={lag: -+ :ay] € RP" :q; = 0} C RP".
Since g is a quotient map and

q_l(Hj) = {(ag,...,an) € R""\ {0} : a; =0}
= p; 1(0) N (R {0}),

we conclude that H; is a closed subset of RIP". Let U; := P"\ H;, ¥V j = 0,1,...,n. Since any
point of RIP" is of the form

[ag : -+ :an] == {A(ag,...,a;) € R"™\ {0} : A € R},
with aj # 0, for some j, we see that {Uyp, Uy, ..., Uy, } is an open cover of RIP".

Proposition 2.7.4. The open subset U; C RIP" is homeomorphic to R", for all j.

Proof. Consider the map ¢; : U; — R" given by

¢ ap aj-1 aj41 ay
[ag:-cap)— | —,...,—,—,...,— |.

aj aj 4 aj

Note that ¢; is a well-defined bijective map with its inverse ¢; : R" — U; given by

(bo, ..., by—1) — [bo: - biqg:1:bj:-- bn].
Note that V; = g~ (U;) = {(a,...,a,) € R"™ : a; # 0} is open in R"*!\ {0}, and the map
f]- (Vi — R" given by (ag,...,an) »i> (%,,%,%,,%) is continuous (why?). Since

gt (gbj_1 (V) = f]._l (V),¥ V CR", and q is a quotient map, we conclude that ¢; is continuous,
for all j (c.f. Proposition 2.6.22).

]Rn-l-l \ {0} )Vj f] R"

Y,
l J{ P ,
q q;j s

RP" < Uu;< -~ ¥

Since f; is a quotient map by Corollary 2.6.18, as before we see that i; = cp]fl is also continuous.
This completes the proof. O

Corollary 2.7.5. RIP" is a compact connected Hausdorff space.
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Exercise 2.7.6. Define an equivalence relation ~ on 5" by
vo~v if ¥ = -0

Show that the associated quotient space 5"/ ~ is homeomorphic to RPP"*. Conclude that RIP"
is a compact connected Hausdorff space.

The complex projective n-space CIP" is the quotient space of C"*1\ {0} under the equivalence
relation ~ defined by
v~ if v =Av, forsome A € C.

So the points of CIP" are precisely one dimensional C-linear subspaces of C"*! (i.e., complex
lines in C"*! passing through the origin 0 € C"*1).

Exercise 2.7.7. Show that CIP" is a compact connected Hausdorff space.

Remark on notations: The real projective n-space RIP" is also denoted by IP; and IP" (R). Similar
notations IP¢ and IP"(C) are also used for complex projective n-space CIP".

2.7.2 Grassmannian Gr(k,R")

Fix two positive integers k and n, with k < n. Let
(RMF:=R" x - x R"
—_———
k-times

be k-fold product of R" together with the product topology. A typical element of (R )¥ is of the
form (vq,...,v;), where vj = (ajl, .. .,11]-,1) € R", forallj =1,..., k. Note that, we can identify
(R™)¥ with My ,(R) using the bijective map

ail ... Aaip
(U],...,Uk) —

agl ... Ay

Consider the subset
X :={(v1,...,0) € (R")F | {v1,..., v} is R-linearly independent}

with the subspace topology induced from (R")¥. Given A := (v1,...,v¢) and A" := (v},...,0})
in X, we define A ~ A’ if

Spang{vy,...,vx} = Spang{v},..., v} }.

Clearly ~ is an equivalence relation on X. The associated quotient topological space X/ ~ is
known as the Grassmannian of k-dimensional R-linear subspaces of R", and is denoted by Gr(k, R").

As a set, Gr(k,IR") consists of all R-linear subspaces of R" of dimension k.

Corollary 2.7.8. Gr(1,R") is homeomorphic to RP" 1.
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Remark 2.7.9 (Pliicker embedding). Given a n-dimensional IR-vector space V/, its k-th exterior
power AFV is a R-vector space of dimension (})- Sending W € Gr(k,R") to its k-th exterior
power NW C AFR”, we get a continuous map

@ : Gr(k,R") — RPY,

where N = (}) — 1. It turns out that ® is a closed embedding (homeomorphism onto a closed
subspace of RIPY). From this, one can conclude that Gr(k, R") is a compact Hausdorff space.

We shall not go into detailed proofs of the above statements.

2.8 Topological group*

Definition 2.8.1. A topological group* is a topological space G which is also a group G such that
the binary map (group operation)

m:GxG—G, (x,y)— xy,

and the inversion map

inv:G — G, x|—>x_1,

involved in its group structure, are continuous. Here we consider G x G as the product topo-
logical space.

We recast the above definition of topological group in more formal language, without using
points of G. This formalism, with appropriate type of spaces and maps between them, defines
Lie group, algebraic group, group-scheme and more generally, a group object in a category (for
curious readers!). Denote by * the topological space whose underlying set is singleton. This
space is unique up to a unique homeomorphism. Given any topological space X, any map
* — X is continuous, and they are in bijection with the underlying set of points of X. On the
other hand, the space * is the final object in the category of topological spaces in the sense that,
given any topological space X, there is a unique continuous map X — *. Clearly the product
space X x * is homeomorphic to X, and the set of all such homeomorphisms are in bijection
with the set of all automorphisms of X (i.e., homeomorphisms of X onto itself). Unless explicitly
specified, we consider the homeomorphism X x * — X given by the identity map Idx : X — X
of X.

Now the above Definition 2.8.1 essentially says that, a topological group is a pair (G,m),
where G is a topological space and m : G X G — G is a continuous map such that the following
axioms holds.

*Additional materials; may be skipped for exam.
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(TG1) Associativity: The following diagram is commutative.

GxGxG—Me _cxe

Idg xml im

GxG m G

(TG2) Existence of neutral element: There is a continuous map e : * — G such that the following
diagram is commutative.

EXIdG IdGXE
*  XG——FGXG=<~—""—G X x

|

G

14
14

(TG3) Existence of inverse: There is a continuous map inv : G — G such that the following

diagram is commutative.

(Idg, inv) CxG (inv,1dg)

G X G
l |- |
* ¢ G ¢ *

Example 2.8.2. (i) Any abstract group is a topological group with respect to the discrete

topology on it.
(ii) (R,+), the real line with usual addition of real numbers, is a topological group.

(iii) (R*,-), the subspace of non-zero real numbers with usual multiplication is a topological
group.
(iv) (Z,+) is a topological group, where the topology on Z is discrete.

(v) For any integer n > 1, the Euclidean space R"” with the component wise addition, i.e.,
(ay,...,ay) 4+ (by,...,by) := (a1 +by,...,ay+ by), Va,b; €R,

is a topological group.

(vi) Given integers m,n > 1, the set of all (m x n)-matrices with real entries M, »,(R), con-
sidered as the Euclidean topological space R™", is a topological group with respect to the
usual matrix addition.

(vii) GL,(RR), the subspace of all invertible (n x n)-matrices with real entries, is a topological
group with respect to multiplication of matrices.

(viii) Circle group: The space S' = {z € C : |z| = 1} C C, together with the multiplication of
complex numbers, is a topological group.

(ix) Any abstract subgroup of a topological group is a topological group with respect to the
subspace topology.
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(x) Product of two topological groups is a topological group.

Exercise 2.8.3. Let G be a topological group. If U C G is an open neighbourhood of identity
e € G, show that there is an open neighbourhood V C G of identity such that V2 := {ab: a,b €
V} C U. (Hint: Use continuity of the multiplication map m.)

Exercise 2.8.4. Show that for any a € G, the right translation by a map
R,:G—=G, g ga,

is a homeomorphism. Prove the same statement for the left translation by a map givenby L,(g) =
ga, for all ¢ € G. (Hint: Note that R, is the composite map g ~ (g,a) ++ ga with inverse R,1.)

Exercise 2.8.5. Show that a topological group G is Hausdorff if and only if it is a T1 space.
(Hint: Ag(G) is precisely the inverse image of {¢} C G under the map (x,y) — x~ly.)

Lemma 2.8.6. Let G be a topological group. Let H be the connected component of G containing the
neutral element e € G. Then H is a closed normal subgroup of G.

Proof. Since connected components are closed, H is closed. Since for any a € H, the set Ha~! =
{ha=': h € H} = R,1(H) contains ¢, and is homeomorphic to H, we must have Ha~! C H.
Since this holds for all 4 € H, we see that H is a subgroup of G. To see that H is normal, note
that, for any ¢ € G, the set gHg ! = L¢(Ry-1(H)) is a connected subset of G containing ¢, and
hence ¢gHg~! C H. This completes the proof. O

Definition 2.8.7. A right action of a topological group G on a topological space X is a continuous
map ¢ : X x G — X such that o(x,e) = x, and o(c(x,81),82) = o(x,m(g1,82)), forall x € X
and g1,82 € G, where m : G x G — G is the product operation (multiplication map) on G.

Similarly, one can left action of G on X.

Without using points, a right G-action ¢ on X can be defined by commutativity of the fol-

lowing diagrams.

(i)
X x *%X x G
)
B X
(ii)
XxGxG el XxG
Idxxmi l
XxG z X

A right G-action ¢ on X induces an equivalence relation on X, which gives a partition of X
as a disjoint union of equivalence classes. A typical equivalence class is of the form

orbg(x) := {xl eX:x'= xg, forsome ¢ € G} = xG,
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and is called the G-orbit of x € X. The associated quotient space, denoted by X/ or X/G,
consists of all G-orbits of elements of X as its points. For this reason, X/G is also called orbit
space. If the G-action on X is transitive (i.e., given any x,x’ € X, there exists g € G such that
x" = xg), then X is called a homogeneous space. In this case, the associated quotient space X/G

is singleton.

Exercise 2.8.8. Given a subgroup H of a topological group G, the H-action on G defined by
GxHw— G, (gh)— gh

gives a partition of G into all right cosets of H in G. Show that the orbit space G/H is a
homogeneous space.

Exercise 2.8.9. Let H be a subgroup of a topological group G, and let G/H = {gH : ¢ € G}
be the associated quotient space of G by the natural H-action on it. Letg : G — G/H be
the associated quotient map. Show that g is continuous surjective and open. (Hint: Since
g '({aH}) = aH, VY aH € G/H, given an open subset U C G, we see that

g (qu) =g (U {gHH = gH= U Ls(U)

geu geu heH
is open in G, and hence g(U) is openin G/H. )

Exercise 2.8.10. Let I = [0,1] C R. Define the Zj-action on I x I which gives identifications
(0,t) ~ (1,1 —1t), for each t € I. Convince yourself that the associated quotient space is
homeomorphic to the Mobius strip (see Figure 2.9). Note that, Mobius strip has only one side!

FIGURE 2.9: Mobius strip

Exercise 2.8.11. Define a Z-action on the n-sphere S" C R"*! which identifies v € S" with its
antipodal point —v € S". Show that the associated quotient space S"/Z; is homeomorphic to
RIP".

Exercise 2.8.12. Show that R/Q is a non-Hausdorff topological group. Hint: Note that Q is
dense in R, and right cosets are just translates of Q.

Exercise 2.8.13. Let 0 : X x G — X be a right action of a topological group on a space X. For
each g € G, show that the induced map

g : X = X, x> xg:=0(x,8)

is a homeomorphism.
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Exercise 2.8.14. Let X be a topological space together with an action of a topological group
G. Show that the quotient map q : X — X/G is open. (Hint: For V C X open, show that
g 1(q(V)) = U Vg is open by Exercise 2.8.13, where Vg = {vg:v € V},Vg € G.)

8€G

Proposition 2.8.15. Let H be a subgroup of a topological group G. Then the orbit space G/H is
Hausdorff if and only if H is closed in G. (Here G/ H is not necessarily a group because H need not be
a normal subgroup of G.)

Proof. If G/H is Hausdorff, then it is a T1 space so that H = orby(e) € G/H is a closed point.
Since H is the inverse image of this point under the quotient map g : G — G/ H (continuous),
H is closed in G. Conversely, suppose that H is closed in G. Since the equivalence relation
given by the H-action on G is precisely the inverse image of H under the continuous map

GxG—G, (g1,%) "~ 1'%

and the quotient map g : G — G/H is open by Exercise 2.8.14, the converse part follows from
Proposition 2.6.33 because H is closed in G. O

Corollary 2.8.16. The topological group R /Q is not Hausdorff.

Definition 2.8.17. A homomorphism of topological groups is a continuous group homomor-
phism. An isomorphism of topological groups is a bijective bi-continuous homomorphism of
topological groups.

Exercise 2.8.18. If f : G — H is a homomorphism of topological groups with H Hausdorff,
show that Ker(f) := {g € G: f(g) = ey} is a closed normal subgroup of G.

Exercise 2.8.19. If f : G — H is a homomorphism of topological groups, show that the induced
map G/Ker(f) — Im(f) is an isomorphism of topological groups.

Exercise 2.8.20. Show that f : R — S! defined by f(t) = ¢*™", for all t € R, is a surjective ho-
momorphism of topological groups. Use Exercise 2.8.19 to show that R/Z = S! as topological

groups.

Exercise 2.8.21. Let f : G — H be a continuous bijective homomorphism of topological groups.
Show that f~! : H — G is continuous (Hint: Use Exercise 2.8.14).

Corollary 2.8.22. A bijective homomorphism f : G — H of topological groups is an isomorphism.

Exercise 2.8.23. Consider the Z-action on R given by o(t,n) = t+n,forallt € Rand n € Z.
Show that the associated quotient space R /¢ is homeomorphic to S'.

Exercise 2.8.24. Show that GL,(R)/ SL,(R) = R* as topological groups.

Exercise 2.8.25. Show that GL,(IR) is disconnected, and has precisely two connected compo-
nents, whereas GL,,(C) is path-connected. (Hint: For the first part, use determinant map. For
the second part, given A € GL,(C) use left and right translation homeomorphisms to move it
to an upper triangular matrix, and then use convex combination map for its entries to move it
to the identity matrix in GL,(C).)
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Exercise” 2.8.26. Show that the group
SO, = {A € GL,(R) : AA" = A'A = I,, and det(A) = 1}

is compact and connected.

Exercise” 2.8.27 (Universal property of product). Let G; and G, be two topological groups. Let
P be a topological group together with homomorphisms of topological groups p; : P — G; and
p2 : P — Gj such that given given any topological group H and homomorphisms of topological
groups f1: H = Gy and f, : H = Gy, there is a unique homomorphism of topological groups
f + H— P such that the following diagram commutes.

Gi P Go.

Prove that there is a unique isomorphism of topological groups ¢ : P — Gy X Ga.

2.9 Connectedness

Let X be a topological space. A separation of X is a pair of open subsets U, V C X such that
U#Q, VO, UNV=0andUUV =X.

Definition 2.9.1. A topological space X is said to be connected if there is no separation of X by
non-empty pair of disjoint open subsets of X that covers X. If X is not connected, it is called
disconnected. A subset A C X is said to be connected if the topological space A, with the
subspace topology induced from X, is connected.

Example 2.9.2. (i) The empty subset ©® C X is always connected because there is no separa-

tion of it.

(ii) The punctured real line R\ {0} is disconnected in R since it has a separation given by the

open subsets (—o0,0) and (0, c0).

(iii) The subset [0,1] \ {1/2} C R is disconnected, since it has a separation given by the sub-
sets [0,1/2),(1/2,1] openin [0,1] \ {1/2}.

(iv) Let Ly := {(x,mx+c¢) : x € R} C R? be a straight-line in the Euclidean plane RR?.
Then the subset R? \ Ly, is disconnected, since it has a separation given by the subsets
U={(x,y):y<mx+c}and V= {(x,y) : y > mx +c} openin R?\ L.

(v) Since Ry = (—00,0) U [0, 00) and both (—o0,0) and [0, %) are open in R, the space R, is
disconnected.

Proposition 2.9.3. A topological space X is connected if and only if the only subsets of X that are both
open and closed are the empty subset of X and X itself.
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Proof. Suppose that X is connected. Suppose on the contrary that there is a non-empty proper
subset U C X of X that is both open and closed in X. Then V := X \ U is a non-empty proper
opensubset of X suchthat UNV = @and U UV = X. This is not possible since X is connected.

Conversely, suppose that the only non-empty subset of X that is both open and closed in
X is X itself. Suppose that X = U U V for some open subsets U and V of X with UNV = @.
If U # @, then V = X \ U is both closed and also open in X, and hence it must be empty set.
Thus X has no separation in X, and hence is connected. O

Exercise 2.9.4. Let T and 7’ be two topologies on a non-empty set X. If t C 7/ and (X, 7’) is
connected, show that (X, 7’) is connected. Give an example to show that the converse does not
hold, in general.

Exercise 2.9.5. Let 7. be the cofinite topology on an infinite set X. Show that (X, T) is connected.

Definition 2.9.6. A topological space is said to be totally disconnected if its only connected non-
empty subsets are singleton subsets.

Example 2.9.7. (i) Let X be a discrete topological space. Let A be a connected subspace of
X. Suppose on the contrary that A contains at least two distinct points, say a,b € A.
Let U = A\{a} and V = {a}. Clearly UUV = Aand UNV = @. Since both U
and V are open in X, and hence in A, we get a separation of A, which contradicts our
assumption that A is connected. Therefore, A must be a one-point space. Therefore, X is
totally disconnected.

(ii) The set Q equipped with the subspace topology induced from IR is totally disconnected.
Indeed, if A C Q is non-empty with at least two points, say a,b € A with a < b, then
choosing an irrational number ¢ € R witha < ¢ < b, we see that U = (—o0,c) N A and
V = (¢,00) N A are non-empty open subsets of A C Q withUNV =Q@and UUV = A
making A disconnected. Note that singleton subsets of Q are not open in Q, and hence
the subspace topology on Q induced from R is not discrete.

(iii) R, is totally disconnected. Indeed, if A C IR, contains at least two distinct points, say
a,b € Awitha < b, thenboth U := (—co,b) N Aand V := [g,00) N A are non-empty open
subsets of A C Ry withUNV = @and UU V = A making A disconnected.

Lemma 2.9.8. Let X be a topological space. Let U,V C X be two non-empty disjoint open subsets of
X such that X = U U V. If A is a connected subset of X, then either A C Uor A C V.

Proof. Since A C X = U UV, A intersects at least one of U and V. Suppose that AN U # @.
Then AN U and ANV are open subsets of A with (ANU) U (ANV) = A. Since A is connected
and ANU # @, we musthave ANV =@, and hence A C U. O

Exercise 2.9.9. Let p : X — Y be a quotient map of topological spaces. Suppose that Y is
connected and each fiber p~(y) is connected, for all y € Y. Show that X is connected.

Answer: Suppose on the contrary that X is not connected. Then there exists a pair of non-empty
open subsets U and U of X such that U3 UlU, = Xand U3 NUp = @. Fixaj € {1,2}. Let
x € Ujandy = f(x) € p(U;) C Y. Since p~1(y) is connected and p~(y) N U, # @, we
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have p~1(y) C U;. Therefore, p_l(p(llj)) C U, and hence p_l(p(llj)) = U;. Since Uy and
U, are open in X and p is a quotient map, both p(U;) and p(U,) are open in Y. Since U; and
U, are non-empty and pair-wise disjoint, so are p(U;) and p(U,). Since p is surjective and
U; Ul = X, wehave p(U;) U p(Uy) = Y. Thus, we have a separation of Y, which contradicts
the fact that Y is connected. Therefore, X must be connected. O

Lemma 2.9.10. The union of a collection of connected subspaces of X that have a point in common is
connected.

Proof. Let {Ay : @ € A} be a collection of connected subsets of X having a common point, say

xp € () Aa. Suppose on the contrary that A := (J A, is not connected. Then there exists
aEA aEA
a pair of disjoint non-empty subsets U,V C A open in A such that A = UU V. Since A,

is connected, A, is entirely contained in exactly one of U and V. Suppose that A,, C U. If

Aﬁ C V,forsome B € A, thenxg € | Ay C Ay N A/g C V, contradicting our assumption
aEN

that Ay, C U. Therefore, Ay C U, foralla € A, and hence A = |J A, C U. This forces V to
aEN
be an empty set, which is a contradiction. Therefore, A must be connected. O

Exercise 2.9.11. Let {A, : n € N} be a sequence of connected subsets of a topological space X

such that A, N A, 11 # @, for all n € IN. Show that |J Aj is connected.
nelN

Answer: Since A, N Ayy1 # D, ¥ n € N, it follows that A, # @, Vn € IN. For eachn € N,

n
let B, = U Ag. Forn =1, By = A; is connected. Suppose that n > 1, and assume inductively
k=1
that B,,_1 is connected. Since both A, and B,,_1 is connected, it follows that B, = B,,_1 U A, is

connected because @ # A,_1 N A; C B,_1 N A;. Then by induction By, is connected, V n € IN.

Since By, is connected, V n € IN, and since (| B, = A1 # @, it follows that J A, = U By
nelN nelN nelN
is connected. O

Exercise 2.9.12. Let { A, : « € A} be a collection of connected subsets of X. Let B be a connected

subset of X such that A, N B # @, for all « € A. Show that BU ( U A,x> is connected.
IS\

Exercise 2.9.13. Let A C X. If C is a connected subspace of X such that CN A # @ and

CN(X\ A) #®, then CNBd(A) # @, where Bd(A) = AN (X \ A) is the set of all boundary
points of A.

Answer: Let U = CNAand V = CN (X \ A). Then both U and V are non-empty disjoint
subsets of C with U UV = C. Suppose on the contrary that C N Bd(A) = @. We claim that both
U and V are closed in C. If V contains a limit point x of U, thenx € VNU' C CN(X\ A)NA =
@, which is a contradiction. Similarly, U does not contain any limit point of V. Since UUV = C,
both U and V are closed in C. Since UNV = @, both U and V are open in C. Thus we
get a separation of C, which is not possible since C is connected. Therefore, we must have
CNBd(A) =®. O

Lemma 2.9.14. Let f : X — Y be a continuous map of topological spaces, and let A be a connected
subset of X. Then f(A) is a connected subset of Y.
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Proof. Suppose on the contrary that f(A) is disconnected. Then f(A) = U UV, for a pair
of non-empty disjoint subsets U,V C f(A) open in f(A). Since g := f|, : A — f(A)is
continuous by Lemma 2.3.19, both ¢~ (U) and ¢! (V') are open subsets of A. Since both U and
V are non-empty and g is surjective, both ¢! (U) and ¢~'(V) are non-empty. Since f(A) =
U UV, it follows that A = f~1(U) U f~1(V). But this is not possible since A is connected.
Therefore, f(A) must be connected. O

Corollary 2.9.15. Let X and Y be homeomorphic topological spaces. Then X is connected if and only if
Y is connected.

Theorem 2.9.16 (Intermediate value theorem). Let f : X — Y be a continuous map, where X is a
connected space and Y is a totally ordered set together with the order topology. Let a,b € Xandy € Y
be such that f(a) <y < f(b) in Y. Then there exists c € X such that f(c) = y.

Proof. Note that U := f(X) N (—oo,y) and V := f(X) N (y,o0) are disjoint open subsets of
f(X) containing f(a) and f(b), respectively. If f~(y) = @, then f(X) = U U V. Which is not
possible since f(X) is connected by Lemma 2.9.14. Therefore, f~!(y) # @. O

Theorem 2.9.17. If X and Y are connected topological spaces, so is their product space X x Y.

Proof. Let X and Y be connected topological spaces, and let X x Y be their product space.
Fix a point b € Y. Since X x {b} is homeomorphic to X, it follows from Lemma 2.9.14 that
X x {b} is connected. Similarly, since Y is connected, {x} x Y is connected, for all x € X. Since
(X x{b})Nn({x} xY)={(x,b)} # @, it follows from Lemma 2.9.10 that

Tep = (X x {b}) U ({x} x Y)

is connected. Since U Typ = X x Y and N Ty = X x {b} # @, it follows from Lemma
xeX xeX
2.9.10 that X x Y is connected. O

Corollary 2.9.18. Let X and Y be two topological spaces. Then X x Y is connected if and only if both
X and Y are connected.

Proof. One direction is already proved in Theorem 2.9.17. Since both of the projection maps
m X XY = Xand 7 : X X Y — Y are continuous and surjective, the converse part follows
from Lemma 2.9.14. O

Corollary 2.9.19. A finite Cartesian product of connected spaces is connected.

Proof. Let Xj,..., X, be connected topological spaces. For n = 1, the result holds trivially.
Assume that n > 1, and the result holds for any # — 1 number of connected topological spaces.
Then Y := Xj x --- x X,,_1 is connected by induction hypothesis. Since Xj x --- x X, is
homeomorphic to Y x Xj;, and that Y x X, is connected by Corollary 2.9.17, it follows from
Lemma 2.9.14 that X; X - - - X X, is connected. O

Lemma 2.9.20. Let X be a topological space. Let A be a connected subset of X. If B C X with
A C B C A, then B is connected in X.
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Proof. If possible suppose that B is not connected in X. Then there exists a pair of non-empty
subsets V;,V, C B open in B such that ViUV, = Band V1NV, = @. Now V; = U3j N B
and V, = U, N B, for some open subsets Uy, Uy of X. Since A C B, Wy :==U1NA=ViNA
and Wy := Uy N A = V, N A are open subsets of A with WyUW, = VNV, NA = @ and
WiUW, = (ViNA)U(VaNA) = (VUV,)NA =BNA = A. We claim that both W; and
W, are non-empty. Indeed, since U; N B = V; # @, there exists a point b € B C A such that
b € Uj. Since b € A, we must have W; = U; N A # @. Similarly, we have W, # @. Thus we
get a separation of A, which contradicts our assumption that A is connected in X. Therefore, B
must be connected. O

Definition 2.9.21. A subset I C R is said to be an inferval in R if given any two points a,b € [
witha < b, wehave (a,b) :={x e R:a<x<b} CL

Proposition 2.9.22. A connected subset of R is an interval.

Proof. Let I C R be a connected subset of R. If I is an empty set or a singleton subset of R,
the result holds trivially. Assume that I contains at least two distinct points. Let a,b € I be
arbitrary. Let x € R be such thata < x < b. Let Uy = (—o0,x) NI and Vy = (x,00) N I. Note
thata € Uy and b € V,. Then U, and V, are non-empty open subsets of I. If x ¢ I, then
I = U, U V4. This is not possible since I is connected. Therefore, I must be an intervalin R. [

Theorem 2.9.23. Any non-empty interval in R is connected.

Proof. In view of Lemma 2.9.20, it suffices to show that any open interval in IR is connected. Let
I be an open interval in R. If possible suppose that I is not connected. Then there exists a pair
of non-empty subsets U, V C I openin I (and hencein R) suchthat UUV =Tand UNV = @.
Fix two points a € U and b € V. Without loss of generality, we may assume that a < b. Let

A:={x€eR:[a,x) CU}

Since b € V and V C [ is open, there exists a 6 > 0 such that (b —,b+ ) C V. Since
[a,b)N(b—06,b+6) # Dand UNV = @, we must have b ¢ A. Thenx < b, Vx € A.
Therefore, A is a bounded above subset of I C IR, and so it has a least upper bound, say
¢:=sup(A) € R. Clearly a < ¢ < b. Since [ is an interval, £ € I. Since ] = U UV, either ¢ € U
orleV.

Case 1: Suppose that ¢ € U. Then U being an open set, (¢ —¢,¢+¢) C U, for some € > 0.
On the other hand, since £ = sup(A) and €/2 > 0, there exists xg € A such that £ — § < xp.
Then [a,0 +€) = [a,x%)U (¢ —¢,L+€) C U, and so £ + € € A, which is not possible since
¢ =sup(A).

Case 2: Suppose that £ € V. Since V is open, there exists €’ > O such that ({ — ¢/, +¢€’') C V.
Since ¢ = sup(A), there exists x; € A such that ¢ — %/ < x1. Then ¢ — %/ Ela,x))N(l—€, 0+
€’) C U NV, which is not possible since UNV = @.

Since we are getting contradictions in both cases, I must be connected. O

Corollary 2.9.24. The Euclidean space R" is connected, for all n > 1.
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Proof. For n = 1, since R is an interval in itself, it is connected by Theorem 2.9.23. Suppose
that n > 1. Since R"” is homeomorphic to the product topological space X; x - - - x X;;, where
X; =R, Vj=1,...,n, the result follows from Corollary 2.9.19. O

Exercise 2.9.25. Show that the unit circle S' C R? is connected. (Hint: Since f : [0,1] — S!
defined by f(t) = €*™, V t € [0,1] is continuous surjective and [0, 1] is connected by Theorem
2.9.23, the result follows from Lemma 2.9.14.)

Exercise 2.9.26. Let f : S' — R be a continuous map. Show there exists a point x € S! such

that f(x) = f(—x).

Answer: Suppose on the contrary that f(x) # f(—x), forall x € S'. Consider the map g : S! —
R defined by

g(x) = f(x) = f(=x), Vxesh

Then g is a continuous map with ¢(S') € R\ {0} = (—c0,0) U (0, ). Since S! is connected
by Exercise 2.9.25, either g(S') C (0,00) or g(S') C (—o0,0) by Lemma 2.9.8. But this is not
possible since if g(x) > 0, for some x € S!, then —x € S! and that g(—x) = —g(x) < 0.
Therefore, there must be a point xg € S! such that g(xg) = 0, which gives f(xg) = f(—xp). O

Exercise 2.9.27. Let f : [0,1] — [0,1] be a continuous map. Show that f has a fixed point (i.e.,
there exists a point 2 € [0,1] such that f(a) = a.).

Answer: Suppose on the contrary that f has no fixed point. Then for each x € [0,1], either
f(x) < xor f(x) > x holds. Since f is continuous, both U := {x € [0,1] : f(x) < x} and
V:={x €[0,1] : f(x) > x} are open subsets of [0,1]. Clearly UNV = @and UUV = [0,1].
Since [0, 1] is connected, we must have either U = @ or V = @. Suppose that U = @. Then
1 must lie in [0,1] = V, which is not possible since f(1) € [0,1]. Similarly, if V = @, then
[0,1] = U forces that f(0) < 1, which is not possible. Therefore, f must have a fixed point. []

Exercise 2.9.28. Show that no two of the subspaces (0,1), (0,1], and [0, 1] of R are homeomor-
phic.

Answer: Suppose on the contrary that f : (0,1] — (0,1) is a homeomorphism. Then f ’(0,1)
(0,1) = (0,1) \ {f(1)} is a homeomorphism. Since (0,1) \ {f(1)} = (0, f(1)) U (f(1),1) gives
a separation of (0,1) \ {f(1)}, and continuous image of a connected space is connected, we get
a contradiction. Therefore, there is no homeomorphism of (0, 1] with (0,1).

Suppose on the contrary that there is a homoemorphism g : (0,1] — [0,1]. Let g(1) =
a €10,1. If0 < a < 1, then g|(0,1) : (0,1) — [0,a) U (a,1] is a homoemorphism, which
is not possible since continuous image of a connected space is connected and [0,4) U (a,1]
is disconnected. Therefore, no such homoemorphism could exist. If f(1) = a € {0,1}, by
removing 1 from (0, 1] and its image a from [0, 1] we reduce the problem to the first case, and
get a contradiction.

Suppose on the contrary that there is a homeomorphism 4 : [0,1] — (0,1). Since b :=
h(0) € (0,1), by removing 0 from [0, 1] and its image b from (0, 1), we get a contradiction as
before. O
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Exercise 2.9.29. If n > 1, show that the Euclidean spaces IR and R are not homeomorphic to
each other.

Answer: Suppose on the contrary that there is a homeomorphism f : R” — R, where n > 1.
Let p € R" be such that f(p) = 0in R. Let X = R"\ {p}. Then f|, : X — R\ {0} is
a homeomorphism. But this is not possible since X = R" \ {p} is connected and R \ {0} is
disconnected. Therefore, R" cannot be homeomorphic to R, for n > 1. O

Theorem 2.9.30. Let {X, : « € A} be an indexed family of connected topological spaces. Then the

product space ] X, is connected.
aEA

Proof. Thanks to Theorem 2.9.17 we may assume that A is infinite and that X, contains at least

two points, for infinitely many & € A. Let X := ] X, be equipped with the product topology.
xEN
Fix a pointa = (aq)4epn € X. Let 7 () be the collection of all finite subsets of A. Given a finite

subset K € .Z (A) of A, let
Xk :={x= (xXa)per € X : x4 = a4, Ya € A\ K}.

Then the subset Xg C X, with the subspace topology induced from X, is homeomorphic to

Xoy X -+ %X Xg,, where K = {ay,...,a,} C A. Since X, is connected, for each & € A, it follows

from Corollary 2.9.19 that Xk is connected. LetY = |J Xp. Since Xr is connected, for all
FeZ(A)
Fe Z(A),andsinceac () Xp, it follows from Lemma 2.9.10 that Y is connected.
FEZ(A)

Note that if X, is not singleton for infinitely many a# € A, then choosing a point b =
(ba)aen € T1 Xo with by # a,, V& € A, we see that b ¢ Y. Therefore, Y # X. We now
xEA

show that the closure of Y in X is X itself. Let b = (by)scpn € X be arbitrary. Let U = [T U,
aEA
be a non-empty basic open subset of X containing b. Then U, C X, is an open neighbourhood

of by in X, V & € A, and there is a finite subset G € #(A) such that U, = X,, Va € A\ G.
Consider the point ¢ = (¢4 )gen € X defined by

A by, if a€gG,
“ ay, if a€A\G.

Then c € UN Xg C UNY. Therefore, ¢ € Y, and hence Y = X. Since closure of a connected
set is connected (see Lemma 2.9.14), the result follows. O

However, the following example shows that the conclusion of the Theorem 2.9.30 fails if we

equip X = EIA X, with the box topology instead of the product topology.
o

Example 2.9.31. For each n € N, let X,, be the Euclidean space R. Let ]RELX be the set ] Xj
nelN
of all sequences of real numbers. Equip the set [] X, with the box topology. Consider the
nelN
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subsets

U = {(an)neN : (an)nen is a bounded sequence},

and V = {(an)neN : (4n)neN is an unbounded sequence}.

of ]RE(I) .- Clearly both U and V' are non-empty subsets of ]R]Ib\g)X with UNV = @. Given a point

a= (ay)peN € IR{IJ\(])X, the subset W := T[] U, where U, = (a, — 1,4, +1) CR, Vn € N, is
neN
an open neighbourhood of a in the box topological space IR%\(I)X. Note that all sequences in W

are bounded (resp., unbounded) if a is bounded (resp., unbounded). Therefore, both U and V
are open in ]R]tl)\g)x. Thus we get a separation of ]R%\(I)X, and hence the space IR%\(I)X is disconnected.

Let X be a topological space. Let
p:={(a,b) € X x X : there is a connected subspace of X containing a and b} C X x X.

Clearly p is reflexive and symmetric. If (a,b),(b,c) € p, then there are connected subspaces
Aand B of X witha,b € Aand b,c € B. Then AN B # @, and hence A U B is connected by
Lemma 2.9.10. Therefore, (a,c) € p. Thus, p is an equivalence relation on X. The p-equivalence
classes in X are called the connected components of X. Clearly, connected components of X are
precisely maximal connected subsets of X, and gives a partition of X. Moreover, any non-
empty connected subspace of X is contained in exactly one of the connected components of
X. Since closure of a connected subspace is connected, it follows that connected components
of X are closed in X. Therefore, if X has only finitely many connected components, then the

connected components of X are both open and closed in X.

Example 2.9.32. All connected components of Q are one-point space. Indeed, if A is a subspace
of Q containing at least two points, say a,b € A, then choosing an irrational number a« € R
with a < & < b we get a separation of A by two non-empty disjoint open subsets (—oo, ) N A
and (¢, 00) N A of A. Moreover, any one-point subspace of Q does not admit any separation,
and hence is connected. Therefore, the only connected subspaces of Q are one-point subspaces.

Lemma 2.9.33. Let X be a topological space. Let A C X be a non-empty connected subset of A that is

both open and closed in X. Then A is a connected component of X.

Proof. Since A is a non-empty connected subspace of A, there is a unique connected component
of X, say C such that A C C. Since A is closed in X, its complement U := X \ A is open in
X. Since C = AU (CNU) and C is connected, C N U must be an empty set. Since A C C, this
forces A = C. O

2.10 Path-connectedness

Definition 2.10.1. A pathin X from xp € X to x; € X is a continuous map 7 : [0,1] — X such
that v(0) = xp and (1) = x1. A topological space X is said to be path-connected if given any
two points xg and x; of X, there is a path in X from x to x;.
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Remark 2.10.2. A path in X joining xg € X to x; € X can equivalently be defined to be a
continuous map v : [4,b] — X with y(a) = xp and y(b) = x1, where a,b € R witha < b. To
see this, note that given 4,b € R with a < b, we have continuous maps

0:[0,1] — [a,b] and ¢’ : [a,b] — [0,1]
defined by

o(t)=1—-t)a+tb, Vte[0,1],

jo S—a
and a(s)——b_a, Vs e lab].

Note that both o and ¢’ are continuous with 0 o ¢’ =1d, ;) and ¢’ 0 o = Idg y).

Then given a continuous map 7 : [0,1] — X with 7(0) = xg and (1) = x1, the composite
map ¢’ o7y : [a,b] — X is continuous and (¢’ o y)(a) = xg and (¢’ o 7)(b) = x;. Conversely,
given a continuous map ¢ : [a,b] — X with §(a) = xg and §(b) = x1, the composite map é o

is continuous and satisfies (6 0 0)(0) = xp and (6o 0)(1) = x7.

Example 2.10.3. (i) Any interval I in R is path-connected. Indeed, given any two points
a,b € I, the map v : [0,1] — R defined by

y(t)=(1—ta+tb, Yte|0,1],

is continuous with 4(0) = a and (1) = b. Note that, y(t) =a+t(b—a) € I, Vt € [0,1].
Therefore, v is a path in I from a to b.

(ii) Consider the subspace X,, = R" \ {0} of the Euclidean space R". For n = 1, it follows
from the intermediate value theorem that there is no path in R \ {0} joining a negative
real number to a positive real number. Therefore, R \ {0} is not path-connected. In fact,
it is not connected.

(iii) Givena point x = (x1,...,x,) € R" let x| = y/x3 + - - - 4 x2 be the Euclidean norm of

x in R". The subspace B(0,7) = {x € R" : |x| < r} of R" is path-connected. Indeed, let
a,b € B(0,r) be arbitrary. Consider the convex combination

Yap(t) :=(1—t)a+tb, Yt el0,1]

Since [v,p()| < (1 —t)|al +t|b] < (1 —t)r +tr = r, the map t — y,;(t) gives a path
in B(0, r) joining a to b. Therefore, B(0, r) is path-connected.

Proposition 2.10.4. Continuous image of a path-connected space is path-connected.

Proof. Let f : X — Y be a surjective continuous map of topological spaces. Assume that X is
path-connected. Let yp, 11 € Y be given. Since f is surjective, there exists xg, x; € X such that
f(x0) = yoand f(xq) = y;. Since X is path-connected, there is a continuous map v : [0,1] — X
with ¢(0) = xp and y(1) = x1. Then f oy : [0,1] — Y is a continuous map with (f oy)(0) = yo
and (f oy)(1) = y1. Thus, Y is path-connected. O
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Example 2.10.5. Assume that n > 2. We show that R" \ {0} is path-connected. Let a,b €

R" \ {0} be arbitrary. Consider the convex combination of @ and b, namely
y(t):=(1—t)a+tb, te]0,1]

Ify(t) #0, YVt €[0,1], thent — (t) gives a path in R” \ {0} from a to b, and we are done. If
v(t) = 0, for some t € [0,1], then choose a point ¢ € R" \ {0} that does not lie on the straight-
line passing through a2 and b in IR". Then the straight-lines in IR" joining a to ¢ and c to b do not
pass through the origin, and thus we get a path in R” \ {0} from 4 to b.

Example 2.10.6. For each integer n > 2, the subspace S"~! := {x € R" : |x| = 1} of the
Euclidean space R" is path-connected. To see this, note that R” \ {0} is path-connected and the
map f: R"\ {0} — S"~! defined by

f(X):”7 Vx e R\ {0},

x

I’
is continuous and surjective. Therefore, it follows from Proposition 2.10.4 that S" ! is path-
connected, for all n > 2.

Definition 2.10.7. Given two paths ¢ : [0,1] — X and ¢ : [0,1] — X with (1) = B(0), we
denote by v ¢ : [0,1] — X the composite path defined by

[ (2, if 0<t<1/2,
(r=8)(®) '_{ s(2t—1), if 1/2<t<1.

Note that -y * ¢ is a continuous map, and hence is a path in X from 7(0) to 5(1).

Proposition 2.10.8. Let X be a topological space. The relation “being path-connected” is an equivalence
relation on X.

Proof. Let
p:={(x,y) € X x X: thereisapathin X from x to y}.

For each x € X, the constant map cy : [0,1] — X sending all points of [0, 1] to x is a path from x
to itself in X. Therefore, (x, x) € p, for all x € X. Thus p is reflexive. Let (x,y) € p. Then there
is a continuous map v : [0,1] — X with ¢(0) = x and (1) = y. Then the map 7 : [0,1] — X
defined by 7(t) = y(1 —t), V t € [0,1], is a path in X from y to x, and hence (y, x) € p. Thus p
is symmetric. Let (a,b), (b,c) € p. Lety,6 : [0,1] — X be two continuous maps with y(0) = 4,
v(1) = b = 6(0) and (1) = c. Then the map y*J : [0,1] — X as defined in Definition
2.10.7 is a path in X joining a to c. Thus (a,¢) € p, and hence p is transitive. Therefore, p is an
equivalence relation on X. The p-equivalence classes in X are called path-components of X, and
X can be written as a disjoint union of its path-componenets. O

Proposition 2.10.9. Let {A, : « € A} be a family of path-connected subspaces of a topological space
X If N Ax # D, then |J Ay is path-connected.

aEN aEN
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Proof. Choose apointp € (| Ay Leta,b € |J Ay be arbitrary. Thena € Ay and b € Ag, for
aEN aEA
some a, € A. Since A, and Ay are path-connected, there exist continuous maps (paths)

Yap : [0,1] = Ay and 7, :[0,1] — Ap
joining a to p in A, and p to b in Ag, respectively. Then the map

Yap*Ypp: [0,1] = Ay UAg C U Ay
aEAN

as defined in Definition 2.10.7 is a pathin |J A, joining a to b. This completes the proof. [
aEA

Proposition 2.10.10. A path-connected space X is connected.

Proof. Fix a point 4 € X. Since X is path-connected, given any x € X, there is a continuous
map 7y : [0,1] — X with 7,(0) = a and (1) = x. For each x € X, the subset 7,([0,1]) C X

is connected by Lemma 2.9.14, and a € (| 7x([0,1]). Then X = U 7«([0,1]) is connected by
xeX xeX
Lemma 2.9.10. O

However, the following example shows that a connected space need not be path-connected.

Example 2.10.11 (Topologist’s sine curve). Consider the subspace S = {(x,sin 1) : x € (0,00)}

x

of the Euclidean space IR?. Since (0, ) C R is path-connected and the map
f:(0,00) =S

defined by
flx) = (x,sini) , W x € (0,00),

is continuous and surjective, it follows from Proposition 2.10.4 that S is path-connected, and
hence S is connected. It follows from Lemma 2.9.20 that the subspace S is connected. The
subspace S is called topologist’s sine curve. Note that, S = SU A, where A = {0} x [-1,1] C R2.
To see this, fix a point (0,f) € A and a real number r > 0. Consider the open neighbourhood
U= (—rr)x (t—rt+r) CR?of (0,t). By Archimedean property of IR, there exists n € IN
such that 0 < ﬁ < ﬁ < r. Then it follows from the intermediate value theorem (Theorem
2.9.16) that, there exists a real number x € (ﬁ, ﬁ) C (0,7) such that sin% = t. Therefore,
(0,t) € S,and hence S = SU A.

We claim that there is no path in S joining (0,0) to (x,sin 1) € S, where x > 0, and hence S
is not path-connected. Suppose on the contrary that there is a path v : [0,1] — S in S joining
the origin (0,0) to (x,sinl) € S, for some x > 0. Since {0} x [—1,1] is closed, its inverse
image 7~ 1({0} x [-1,1]) C [0,1] is closed and bounded. Then there exists a € [0, 1] such that

a=sup{t:t ey ({0} x [-1,1])}. Replacing [0, 1] by [a, 1], if required, we may assume that
7(0) € {0} x [-1,1] and (t) €S, Vt > 0.

Let y(t) = (x(t),y(t)), where x(t) and y(t) are continuous maps such that
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x(f) >0, Vt>0,and

. y(t)—sm 0L Vit>0.

Now we construct a sequence (t,),en in [0, 1] such thatt, — 0asn — oo, while y(t,) = (—1)",
for all n € IN, which would contradict continuity of y = 715 o ¢, and hence of 1.

To construct such a sequence, we proceed as follow: given n € IN, choose a real number u,,
with 0 < u, < x(1/n) such that sin ui” = (—1)". This is always possible. Then use intermediate
value theorem to find t, € (0,1/n) such that x(t,) = u,. This sequence (t,),eN do the job.
Therefore, there is no path in S joining (0, 0) to a point of S.

Exercise 2.10.12. A hyperplane in the Euclidean space R" is the zero locus of a non-constant
linear polynomial f € Rxq,...,x,]. In other words, a hyperplane in R" is a subspace of the

form
H={(ay,...,an): f(ay,...,a,) =0},

where f is a non-constant linear polynomial over R, i.e., f is of the form f = co+ci1x; + -+ - +
cnxp With coefficients cg, ¢y, ...,¢4 € R such that not all of ¢y, ..., ¢, are simultaneously zero.
Show that a hyperplane in R" is path-connected.

Proposition 2.10.13. Assume that n > 2. For any countable subset A of R", the subspace R" \ A of
R" is path-connected.

Proof. Given a point p € R", let .Z}, be the set of all straight-lines in R" passing through p.
Since for each g € R" \ {p} there is a unique straight-line in R" passing through p and g, the
set .Z, is uncountable. To show R" \ A is path-connected, we fix any two points a,b € R", and
join them by a path in R" \ A.

Let a,b € R"\ A be arbitrary. Since A is countable, there exists a straight-line L € .%,
passing through a that does not intersect A. For each point p € L, we have a unique straight-
line L, in R" passing through p and b. Since there are uncountably many points on L and
A is a countable set, we can choose a straight-line L, ; in R" that passes through b and p € L
and does not intersect A. Since L and L, are path-connected (as being continuous image of
the Euclidean line R) and LN L, ;, # @, it follows from Prposition 2.10.9 that LU L, is path-
connected. Since a,b € Y,; := LUL,;, we have a path in ¥, C R" \ A joining a to b. This
completes the proof. O

Exercise 2.10.14. Assume that n > 2. Let W be a R-linear subspace of the Euclidean space IR".
If dimg (W) < n — 2, show that R" \ W is path-connected.

Proof. If n = 2, then dimg (W) = 0. Then W = {(0,0)} C R?, and hence R? \ W is path-
connected. Assume that n > 3. Choose an ordered basis, say {vy,...,v,_2} for W and extend
it to an ordered basis {vl, e Un—2,0y-1,0n} for V.= R". Fix two points a,b € R" \ W. Write

a= Zavlandb— val,whereal,b €R,Vi=1,...,n Since a,b € R"\ W, we have

i=

(an,l,an), (by—1,bn) 6 ]R2 \ {(0,0)}. Since R?\ {(0,0)} is path-connected, there is a path, say
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5:[0,1] — R?\ {(0,0)} from (a,_1,a,) to (b,_1,by,). Since (ay,...,a,_2),(b1,...,by_) € R"2
and n — 2 > 1, there is a path, say 7 : [0,1] — R"~2joining (ay,...,a, ) to (by,...,b,_»). Let
us denote by p;‘ : RF — R, the projection map onto the j-th coordinate of RF. More precisely,

p;-‘(xl,...,xn) =xj, V(x1,...,%n) € RF.

Note that, p;? is continuous, for allk € N and j < k. Let ; = pf’_z oy and (5]- = pJZ 06, for all
i€{l,...,n—2}andj € {1,2}. Then the map « : [0,1] — R" defined by

n—2
a(t) =Y 7j(t)vj + 61 (t)vu_1 + 62(t)on, V€ [0,1],
j=1

is continuous with «(0) = a and (1) = b. Since J is a path in R? \ {(0,0)}, the image of a
lands in R"” \ W. Therefore, R"” \ W is path-connected. O

Exercise 2.10.15. Let {W; : j € N} be a countable family of R-linear subspaces of R3 such that

dimg(W;) <1, Vj€N.Is R3\ U W; connected? Is it path-connected?
jEN

Hint: Note that, W; is either a point or a straight-line in IR? passing through the origin. Leta, b €
R3\ EN Wi be given. Since there are uncountably many planes in R3 passing through a and b,
]
there is at least one such plane P whose intersection with |J W; is at most countable. Since a
JEN
plane is homeomorphic to IR?, we see that P\ ( U W;) is path-connected. Thus R3\ U W;is
JEN jEN
path-connected. O

Proposition 2.10.16. A connected open subspace of R" is path-connected.

Proof. Note that, given a € R" and any real number r > 0, the Euclidean open ball
B(a,r):={x € R": |a—x| <r}

in R" is path-connected. This follows by observing that given any point x € B(a,r) there is a
path
b= yx(t):=(1—ta+tx, Vte[0,1],

in B(a, r) joining a to x.
Let A be a non-empty connected open subset of R". Fix a pointa € A, and let
U, = {x € A : there is a path in A joining a to x}.

Note that U, # @, since a € U,. Clearly U, is path-connected. Let x € U, be arbitrary. Let
Yax : [0,1] — A be a path in A joining a to x. Since x € A and A is open in R”, there exists a
real number r > 0 such that

B(x,r):={y e R":d(x,y) <r} CA,
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where d(x,y) is the Euclidean distance between x and y in R". Since B(x, r) is path-connected,
for each y € B(x,r) there is a path, say

Yy : [0,1] = B(x,7)

in B(x,7) joining x to y. Then the map y,,x *x Yz, : [0,1] — A as defined in Definition 2.10.7 is a
path in A joining a to y. Therefore, B(x,r) C U,, and hence U, is open in A.

If A\ U, # @, choose a pointy € A\ U,. Then there is no path in A joining a to y. Since A is
open in IR", there is a real number ry > 0 such that B(y,rg) € A. We show that B(y,ro) N U, =
@. For otherwise, if x € B(y,rp) N Uy, then there is a path, say 7y : [0,1] — A, in A joining
a to x. Since B(y, 7o) is also path-connected, there is a path, say v, : [0,1] — B(y,rg) C A
in B(y,rp) joining x to y. Then (yax * Yxy) : [0,1] — Ais a path in A joining a to y. This
contradicts the fact that y € A\ U,. Therefore, A \ U, is also open in A. Thus, U, is both open
and closed in the connected space A, and hence is equal to A by Lemma 2.9.33. O

Exercise 2.10.17. Show that any non-empty open subset of IR"” contains a basis for the R-vector
space R".

Proof. We denote by | e| the standard Euclidean norm on R”. Fix an ordered basis {ey, ..., e, }
for R". Replacing ¢; with e;/||e;||, if required, we may assume that ||¢;| =1, foralli =1,...,n.
(for simplicity, you may think of the standard ordered basis for IR"”). Note that, for any real
number t > 0, the subset {teq,...,te,} is a basis for R”, and is contained in the open ball
B(0,t). Then for given any a € R", consider the subset

B(0,t)+a:={x+a:x € B(0,t)} C B(a,t).

Note that
f(t) :==det(x +tey,..., x +tey) € R[]

is a non-zero polynomial in one variable ¢, and hence it has only finitely many zeros in R.
Therefore, the subset {x + tey,...,x + te, } is R-linearly independent except for finitely many
t > 0. Now for an arbitrary non-empty open subset U of R", fixing a point a € U, we can find
areal number 6 > 0 such that B(a,d) C U and it contains a basis for the R-vector space R"”. [J

Exercise 2.10.18. Let U be a non-empty open subset of R”. Let W be an R-linear subspace of
R". If UNW # @, then U N W contains a basis for the R-vector space W that can be extended
to a basis for R” contained in U.

Proof. Let d = dimg(W). Choosing a basis, say {wy,...,w;} for W, we have an R-linear
isomorphism
f:]Rd =W, (x1,..., %) — X101 + ... + X Wy,

which is, in fact, a homeomorphism. Then f~1(U N W) is a non-empty open subset of R?, and
hence it contains a basis, say {vy,...,v;} for R" by Exercise 2.10.17. Since f is an R-linear
isomorphism, {f(v1),..., f(v4)} is a basis for W which is contained in U N W. Replacing each
f(v;) with A;f(v;), if required, we may assume that {f(v1),..., f(v4)} C Bgrn(a,8) "W, for
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some a € UNW and § > 0 such that Bgs(a,6) C U. Then applying a linear translation
T, R" = R" x—x—a,
we can get an R-linearly independent subset

{f(v1) —a,..., f(vg) —a} C Bru(0,9)

of R". Extend it to a R-linear basis, say

{f(01),.... f(va), s, .., un} C Brn(0,0)
for R". Then apply the opposite linear translation map
T.:R"—>R", y—y+a,
to get a basis {f(v1),..., f(v4), g1 +a,..., uy +a} for R". Since |u;| < §, foralli = d +
1,...,n, it follows that uy, 1 +a,...,u, +a € Bgrn(a,5) C U. This completes the proof. O
Exercise 2.10.19. Fix an integer n > 3. Let U be a non-empty connected open subset of R". If

W is a R-linear subspace of R"” with dimg (W) < n — 2, show that U \ W is connected.

Proof. Recall that a non-empty connected open subset of R" is path-connected. We show that
U \ W is path-connected. If U N W = @, there is nothing to prove. We assume that U NW # Q.
Fix two points a,b € U\ W. Using Exercise 2.10.18 we can find an ordered basis {v1,...,v,}
for R" contained in U such that {vy,...,v;} € W, where d = dimg(W) < n — 2. Then each
element x € U can be uniquely expressed as

U= U101 + -+ Upoy,
for some (uq,...,u,) € R" such thatu € W if and only if (#4,4,...,u,) = 0in R" 4.

Now the maps 71y : U — R"*% and rryy : U — R¥ defined by

nu(xlvl +-+ xnvn) = (xd+1/ Tt /xn)-
nw(xlvl + -+ xnvn) = (Xl,- .. ,xd),
are continuous. Note that 7r;;(U) € R"~\ {0}. Since U and W are path-connected, so are

ﬂu(U) and ﬂw(U).

We can writea = a1v1 +...+a,v, and b = byv; +...+b,v,, forsomeay,...,a,,by,...,b, €
R. Since a,b € U\ W, we have

(ad+1,...,ﬂn), (bd+11--'rbn) S ﬂu(U) - ]Rnid\{O}.

Since 7y (U) € R"%\ {0} is path-connected, there is a path v : [0,1] — m(U) joining
(ad+1, .. .,ﬂn) to (bd+1,. . .,bn). Since (ﬂl, .. .,ad), (bl, .. .,bd) S ﬂw(U) - R4 and ﬂw(ll) is
path-connected, there is a path ¢ : [0,1] — 7ty (U) joining (ay,...,a4) to (b, ..., by).
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We denote by 77/" : R" — R the projection map onto the i-th factor of R™. Then the map
a :[0,1] — R" defined by

d n

a(t) =) n?’y(t)vi +) n}lidé(t)vj, Vte(o,1],
i=1 =1

is continuous. Note that «(0) = 2 and «(1) = b. It remains to show that a([0,1]) C U\ W. Left
as an exercise! O

Exercise 2.10.20. Let n > 3. Let Wy, ..., Wi be finitely many RR-linear subspaces of IR with
k

dimg (W;) < n — 2, for all i. Show that R" \ |J W; is path-connected. If we remove countably
i=1

infinitely many R-linear subspaces {Wy : k € N} with dimg(Wy) <n —2, Vk € N, from R”,

what can we say about connectedness of R" \ | U W |?
keIN

Definition 2.10.21. A topological space X is said to be locally connected at x € X if each open
neighbourhood of x contains a connected open neighbourhood of x. If X is locally connected
at each point of it, then X is said to be locally connected. Similarly, X is said to be locally
path-connected at x € X if each open neighbourhood of x contains a path-connected open neigh-
bourhood of x; and X is said to be locally path-connected if it is locally path-connected at each of
its points.

Example 2.10.22. The Euclidean line R is both locally connected and locally path-connected.
The subspace [0,1) U (1,2] C R is locally connected and locally path-connected, but neither
connected nor path-connected. The topologist’s sine curve is connected but not locally con-
nected.

Proposition 2.10.23. Let X be a topological space. Then X is locally connected (resp., locally path-
connected) if and only if for each open subset U of X, any connected component (resp., path-component)
of U is open in X.

Proof. Suppose that X is locally connected (resp., locally path-connected). Fix an open subset
U of X. Let C C U be a connected component (resp., path-component) of U. Let x € C be
given. Since X is locally connected (resp., locally path-connected), there is a connected (resp.,
path-connected) open subset Vy C X such that x € Vi and V, C U. Since C is a connected
component (resp., path-component) of U containing x and V, N C # @, we have V, C C.

Therefore, C is open in X.

Conversely, suppose that any connected component (resp., path-component) of an open
subset of X is openin X. Let xg € X and let U be an open neighbourhood of xpin X. Let C C U
be a connected component (resp., path-component) of U containing xg. Then C is open in X.
Thus, X is locally connected (resp., locally path-connected). O

Theorem 2.10.24. Let X be a topological space. Each path-component of X lies in a connected compo-
nent of X. If X is locally path-connected, then the path-components and the connected components of X
are the same.
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Proof. Let C be a path-component of X. Then C is path-connected, and hence is connected.

Then C is contained in a connected component of X.

Assume that X is locally path-connected. It suffices to show that connected components of
X are path-connected. Let C be a connected component of X. Fix a point xg € C, and consider
the subset
U := {x € C : there is a path in C joining xg to x}.

Clearly U is non-empty subset of C since xg € U. Note that U is path-connected. Indeed, given
any two points x, y € U, we have paths 7y and ¢ in C joining x( to x and y, respectively. Let

7:[0,1] = C, t—y(1—1t),

be the inverse path in C joining x to xg. Then J x % is a path in C from x to y.

We show that U is both open and closed in X, and hence coincides with C. Let x € U
be given. Since X is locally path-connected, there is a path-connected open neighbourhood
Vi C X of x. Since V; is a connected subspace of X containing x, it must be contained in the
connected component C of X containing x. Since V is path-connected, given a point of y € Vy,
there is a path, say ¢ : [0,1] — V,in V, C C from x to y. Since x € U, there is a path, say
7 :[0,1] — C from xg to x. Then 7 x J is a path in C joining x¢ to y. Thus, Vy C U, and hence U

is open in X.

We claim that U is closed in X. Let y € X \ U be arbitrary. Since X is locally path-connected,
there is a path-connected open neighbourhood, say V;, C X of y. We claim that V;, NU = @.
Suppose on the contrary that there is a point z € V;, N U. Since z € U C C and V}, is connected,
we must have V, C C. Choose a paths 7y in C from xg to z, and a path § in V}, C C from z to
y. Then 7y x4 is a path in C joining x¢ to y. Then y € U, which contradicts our choice of y as a
point of X \ U. Therefore, we must have V, N U = @. Thus, no point of X \ U can be a limit
point of U. Therefore, U is closed in X. Since U C C is both open and closed in X, it must be a
connected component of X by Lemma 2.9.33, and hence U = C. O

2.11 Compactness

Let X be a topological space. Let A C X. A collection F = {V, : « € A} of subsets of X is

said to be a cover of Aif A C |J V,. If all members V, of F are open subsets of X, then F is
xEA
called an open cover of A in X. A subcover of F is a subcollection of F such that union of all its

members cover A.

Definition 2.11.1. A topological space X is said to be compact if every open cover of X has

a finite subcover. In other words, given a family of open subsets 7 = {U, : « € A} such

n
that X = |J Uy, there exists a finite subcollection {Uy,, ..., Us, } of 7 such that X = U Uy,
aEA j=1
A subset K of a topological space X is said to be compact if it is compact with respect to the

subspace topology on K induced from X.
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Example 2.11.2. The Euclidean space R is not compact, as it has an open cover {(n,n + 2) :

n € N} which has no finite subcover.

Example 2.11.3. The subspace K := {% :n € N} C R is not compact. To see this, for each
n € IN we consider the open interval U, := (% — T, % +71,), wherer, := % (% — %H) Then U,
is an open neighbourhood of % and that U, N U, = @, forall n # m in N. Then {U, : n € N}
is an open cover of K, which has no finite subcover. However, KU {0} is compact. To see
this, consider an open cover F = {U, : « € A} of KU {0}. Then 0 € U,,, for some ay € A.
Since Uy, is an open subset of IR, there exists a real number r > 0 such that (-7, r) C Uy, -
Then by Archimedean property of R, there is np € N such that 1 < r, V n > ng. For each

je{1,...,np}, we can choose an open subset Ua]. € F such that % € Ua]., Vij=1,...,n. Then

n
KU {0} C Uy U ( UO Uy;). Therefore, KU {0} is compact.
=1

Exercise 2.11.4. Show that any subset of IR is compact in the cofinite topology on RR.
Exercise 2.11.5. Show that a finite union of compact topological spaces is compact.

Exercise 2.11.6. If K is a compact subset of a metric space (X,d), show that K is closed and
bounded in (X, d). Show by an example that a closed and bounded subset of a metric space
need not be compact.

Lemma 2.11.7. Let X be a topological space. A subspace K C X is compact if and only if every open

cover of K in X has a finite subcover.

Proof. Let K C X. Assume that K is compact. Let .7 = {U, : « € A} be a collection of open

subsets U, of X such that K C |J U,. Then Fk := {Uy N K : a € A} is a collection of open
aEN
subsets of K such that K = (J (U, N K). Since K is compact, there exists a1, ..., &, € A such
aEAN

n
that K = U (Us; N K). Then {Uy,;, ..., Uy, } is a required finite subcover for K.
j=1
Conversely, suppose that every open cover of K has a finite subcover. Let {V, : « € A}

be a collection of open subsets of K such that K = |J V,. Note that, for each « € A, we have
aEN

Vi = Uy NK, for some open subset U, of X. Since K C |J U,, the collection .# = {U, : « € A}
aEN
n
is an open cover of K in X. Then there exists a1,...,a;, € A such that K C [J Ua].. Then
j=1
n
K= U Vi, This completes the proof. O
j=1

Proposition 2.11.8. A closed subspace of a compact space is compact.

Proof. Let K be a closed subspace of a compact space X. Let # = {U, : « € A} be an open
cover of K in X. Then .# U {X \ K} is an open cover of X. Since X is compact, there exists

n
aq,...,0, € Asuchthat X = (X\K)U( U Uaj). Since K does not intersect X \ K, we have
j=1

KC

C=

U,.. Thus, K is compact. O]
] p

j=1
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Proposition 2.11.9. Let K be a compact subspace of a Hausdorff space X. Assume that X \ K # @.
Then given x € X \ K, there exists a pair of open subsets U and V of X such that x € U, K C V and
unv=a.

Proof. Since X is Hausdorff, for each y € K there exists a pair of open subsets U, and V,, of X
containing x and y, respectively, such that U, NV}, = @. Then {V}, : y € K} is an open cover of
n
K. Since K is compact, there exists finite number of points y1,...,y» € Ksuchthat K € U V..
j=1

n n
Let U := N Uy, and V := {J V. Then U and V are open subsets of X containing x and K,
j=1 =1

]
respectively. Since Uy’. N Vyi =@, forallj=1,...,n, it followsthat UNV = Q. O

Corollary 2.11.10. A compact subspace of a Hausdorff space is closed.

Proof. Let K be a compact subspace of a Hausdorff space X. It follows from Proposition 2.11.9
that a point of X \ K cannot be a limit point of K. Therefore, K is closed in X. O

Proposition 2.11.11. Continuous image of a compact space is compact.

Proof. Let f : X — Y be a continuous map of topological spaces with X compact. We show that

f(X) is a compact subspace of Y. Let F = {V,, : « € A} be a collection of open subsets of Y

such that f(X) C |J V. Since f is continuous, {f~!(V,) : « € A} is an open cover of X. Since
aEA

n n
X is compact, there exists aq,..., &, € A such that X = U f’l(Vaj). Then f(X) € U V,X],.
j=1 j=1
Therefore, f(X) is compact. O

Corollary 2.11.12. Let f : X — Y be a continuous bijective map. If X is compact and Y is Hausdorff,
then f is a homeomorphism.

Proof. To show f is a homeomorphism, we show that f~! : Y — X is continuous. Let g = f~1.
Let Z C X be a closed subset of X. Since X is compact, Z is compact by Proposition 2.11.8.
Then ¢~1(Z) = f(Z) is compact by Proposition 2.11.11. Since Y is Hausdorff, g1 (Z) = f(Z)
is closed by Proposition 2.11.8. Therefore, f ! is continuous, and hence f is a homeomorphism.

O

Exercise 2.11.13. Let 7y and 1, be two topologies on a non-empty set X. Assume that both
(X,71) and (X, 72) are compact and Hausdorff. Show that either 77 = 1, or they are not com-
parable. (Hint: Use Proposition 2.11.8 and Corollary 2.11.10).

Lemma 2.11.14 (Tube lemma). Let X and Y be topological spaces. If B is a compact subspace of Y,
given a point x € X and an open subset W C X x Y containing the slice {x} x B, there exists an open
neighbourhood U C X of x and an open subset V. C Y containing B such that U x V C W.

Proof. Note that the product topology on X x Y has a basis consisting of subsets of the form
U x V, where U and V are open subsets of X and Y, respectively. Since W C X X Y is an open
subset containing the slice {x} x B, for eachy € B we can choose open neighbourhoods U, C X
and V;; C Y of x and y, respectively, such that (x,y) € U, x V;, C W. Then {V}, : y € B} is an
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open cover of B. Since B is compact, there are finite number of open subsets Vy,,...,V,, CY

n n n
such that B C | Vy/. LetU =N Uy]. andV = (J Vy].. Then U and V are open subsets of X and
=1 j=1 j=1

Y, respectively, and that x € U and B C V. Clearly, {x} x BC U x V C W, as required. O

Example 2.11.15. Tube Lemma 2.11.14 fails if B is not compact. For example, let X =Y = B =
R with the Euclidean topology on them. Then the slice {0} x R (i.e., the y-axis in IR?) has an
open neighbourhood

1
W:{(x,y)e]l@;x <y2+1}

in IR? which contains no open neighbourhood of {0} x R of the form U x R, where U is an
open neighbourhood of 0 in R (verify!).

Corollary 2.11.16 (Generalized tube lemma). Let A and B be compact subspaces of X and Y, respec-
tively. Let N C X x Y be an open subset containing A x B. Then there exist open subsets U C X and
V CYsuchthat Ax BCUxV CN.

Proof. For eacha € A, the slice {a} x B is contained in N. Then by Tube lemma 2.11.14 there is
an open neighbourhood U, C X of a and open subset V, C Y containing B such that {a} x B C
U, x V; € N. Since {U; : a € A} isan open cover of the compact space A, there is a finite

subcover, say {Uy,, ..., Uy, } for A. Let U = U Ua and V = ﬂ Va Then U and V are open
j=1
subsets of X and Y, respectively. Clearly, A Q U and BC V. ThenAxBCUxV CN. O

Theorem 2.11.17. Finite product of compact spaces is compact.

Proof. It suffices to show that product of two compact spaces is compact. Then the general case
follows by induction on the number of compact spaces. Let X and Y be compact topological

spaces. Let F = {W, : &« € A} be a collection of open subsets of X x Y such that | W, =
aEA
X x Y. For each x € X, since the slice {x} x Y is a compact subspace of X x Y, there exists

a(x,1),...,a(x,n(x)) € A such that {x} xY C U Wi Then by tube lemma (Lemma
xj) y

2.11.14) there exists an open neighbourhood U, C X of x such that

n(x)
{x}xycu,xyc | Uw,
j=1

a(x,j)*

Since {U, : x € X} is an open cover of X and X is compact, there exists x1,...,x, € X such
m
that X = {J Uy,. Then

i=1

m n(x;)
XxYCUUxxYCU U W) S X x Y.
i=1 i=1 j=1

Therefore, {Wa(x,,j) :1<j<n(x),1<i<m} C Fisarequired finite subcover for X x Y,

and hence X x Y is compact. O
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Definition 2.11.18. A collection & of subsets of X is said to have finite intersection property if for

n
any finite subcollection {Cy,...,C,} of €, we have Ci #@.
j=1
Theorem 2.11.19. A topological space X is compact if and only if given any collection € of closed

subsets of X having finite intersection property, the intersection (| C is non-empty.
Ce?

Proof. Suppose that X is compact. Let € be a collection of closed subsets of X having finite

intersection property. Suppose on the contrary that (| Z = @. Then taking complement in X,
VA
we have |J (X\ Z) = X. Then the collection
yAS

U :={X\Z:Ze%}

is an open cover of X. Since X is compact, there exists a finitely many elements Zy,...,Z, € €

n n
such that |J (X'\ Z;) = X. Taking complement in X, we have (] Z; = @, which contradicts the
j=1 j=1
fact that ¢ has finite intersection property. Therefore, | Z # @.
yAS

Conversely, suppose that given any collection ¢ of closed subsets of X having finite in-

tersection property, the intersection ()| Z is non-empty. Suppose on the contrary that X is
VA

not compact. Then there exists an open cover, say % of X that has no finite subcover. Then

¢ :={X\U:Ue€ %} is a collection of closed subsets of X. Since % has no finite subcover,

given any finite collection {X \ U; : j = 1,...,n} of elements of ¢, we have

=

(X\U;) = X\ Ouj £Q.
j=1 j=1

In other words, € has finite intersection property. Then by assumption, we have (| Z # @.
VA
Taking complement in X, we see that % is not an open cover of X, which is a contradiction.

Therefore, X must be compact. O

Remark 2.11.20. Let X be a topological space. A sequence of subsets {Z, : n € N} of X is said
to be nested if Z,,.1 C Z,, V n € N. Let {Z, : n € N} be a nested sequence of closed subsets of
a compact topological space X. If Z, # @, ¥ n € N, then the collection {Z, : n € IN} satisfies

finite intersection property, and hence (| Z, # @ whenever X is compact.
nelN

Exercise 2.11.21. Let f : X — Y be a map of topological spaces, and let
Gr={(xy) eXxY:y=f(x)}
be the graph of f.

(i) If f is continuous and Y is Hausdorff, then Gy is closed in X x Y.

(if) Kuratowski’s theorem: If Y is compact, show that the projection map 711 : X x Y — Xis
a closed map.
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(iii) If Y is compact and Gy is closed, then f is continuous.
Proof. (i) Themap f: X — Y inducesamap (f xIdy) : X x Y — Y x Y defined by

(f x1dy)(x,y) = (f(x),y), ¥ (xy) € XxY,

where Idy : Y — Y is defined by Idy(y) =y, Vy € Y. Since both f and Idy are continuous,
(f x Idy) is continuous. Since Y is Hausdorff, Ay(Y) = {(y,y) : vy € Y} isclosedin Y x Y.
Since G¢ = (f x Idy)~1(Ay(Y)), we see that Gy isclosed in X x Y.

(ii) Let C be a closed subset of X x Y. Let xyp € X \ 1(C) be arbitrary. Then the slice
{x0} x Y is contained in the open subset (X x Y) \ C of X x Y. Since Y is compact, by tube
lemma 2.11.14 there is an open neighbourhood W of x¢ in X such that

{xo} xYCWxYC(XxY)\C.

Then xg € Wand W C X\ 711(C). Thus X \ 711(C) is open in X, and hence 771 (C) is closed in
X. Thus, m is a closed map.

(iii) Let Z C Y be any closed subset of Y. To show f is continuous, we show that f~1(Z) is
closed in X. Since X x Z is closed in X x Y, and since Gf is closed in X x Y by assumption, the
subset

GrN(XxZ)={(xy) e XxY: f(x) € Z}

is closed in X x Y. Note that 771(Gf N (X x Z)) = f~}(Z), where 71y : X X Y — X is the
projection map onto the first component. Since Y is compact, the projection map 711 : X x ¥ —
X is closed by part (ii). Therefore, f~1(Z) is closed. This completes the proof. O

Definition 2.11.22. Let (X, d) be a metric space. A subset A of X is said to be bounded if there
exists a real number M > 0 such thatd(a,b) < M, Va,b € A. If A is a bounded subset of X,
then

diam(A) := sup d(a,b)
a,beX

exists in R, and is called the diameter of A.
Lemma 2.11.23. Any closed and bounded interval in R is compact.
Proof. Leta,b € R with a < b, and consider the closed interval
[a,b] ={xeR:a<x<b}CR.
Let # := {V, : « € A} be an open cover of [a,b] in R. Let
K:= {x € (a,b] : [a,x] can be covered by finitely many members of .7 }.

Since [a,b] C |J Vi, there exists ayp € A such thata € V,,. Since V,, is open in R, there
aEA
exists a real number r > 0 such that (2 —r,a +r) C V,,. Then for any x € (a,a +r), we have

[a,x] € V4, and hence x € K. Therefore, K is non-empty. Clearly K is bounded above by



84 Chapter 2. Point Set Topology

b. Then by the least upper bound property of IR, the least upper bound ¢ := sup K exists in R.
Clearly a < ¢ < b. We claim that ¢ € F. Since ¢ € [a,]], there exists B € A such that c € Vj.
Since Vjp is open in R, there exists § > 0 such that (c—38,c+6) C V. Since ¢ = sup K, there
exists an element x € K such that c —J < x < c. Then [a, x] can be covered by finitely many
objects, say Vy,, ..., V4, € %, and hence [a, c| can be covered by {V,,,..., V4,, V/g} C .Z#. Then
c € K. Now we show that ¢ = b. If not, then ¢ < b. Since ¢ € V,, for some v € A, there
exists t € (c,b) such that [c,t] C V,,. Then [a,t] = [a,c] U [c, t] can be covered by finitely many
elements from .#, and hence t € K. Since t > ¢ = sup K, we get a contradiction. Therefore,
¢ = b. This completes the proof. O

Theorem 2.11.24. A subspace K of the Euclidean space R" is compact if and only if it is closed and
bounded.

Proof. Suppose that K is a compact subspace of R”. Since R"” is Hausdorff, K is closed in R" by
Corollary 2.11.10. Let B;(0,n) = {x € R" : |x|| < n}, where ||x| € R stands for the Euclidean
norm of x € R". Since {B;(0,n) : n € N} is an open cover of R”, and hence of A, and since
B(0,n) C B(0,n+1), Vn € N, by compactness of K we can find 1y € IN such that A C B(0,n).
Therefore, K is bounded.

Conversely, suppose that K is closed and bounded in R”. Let d : R” x R" — R be the
Euclidean metric on R" defined by

d(x,y) = lx —yl = /(21 =y + -+ (on — ya)?,

where x = (x1,...,%n), ¥y = (y1,-..,yn) € R". Since K is bounded, there exists a real number
M > 0 such that d(x,y) < M, V x,y € K. Fix a point xyp € K, and let £ := d(x(,0) be the
Euclidean distance of xg from the origin 0 of R”. Then by triangle inequality, we have

d(x,0) <d(x,x9) +d(xp,0) < M+

Let r :== M+ ¢ > 0. Since the closed interval [—r,7] C R is compact by Lemma 2.11.23, its
n-fold product [—r,r]" C R" is compact by Theorem 2.9.17. Note that, K C [—r,r]". Since K is
closed in IR", it is closed in the compact space [—r, r|". Therefore, K is compact by Proposition
2.11.8. O

Theorem 2.11.25 (Extreme value theorem). Let X be a compact topological space and Y an ordered
set together with the order topology on it. Let f : X — Y be a continuous map. Then there exist a,b € X
such that f(a) < f(x) < f(b), Vx € X.

Proof. Since X is compact and f is continuous, A := f(X) is a compact subspace of Y. We

claim that A has a largest element and a smallest element (i.e., there exist M, m € A such that

m < a <M, Va e A). Suppose on the contrary that A has no largest element. Then for each

a € A there exists a’ € Asuchthata < a’sothata € (—o0,a’):={y €Y :y<a'} CY. Then

the collection .# = {(—o0,a) : a € A} is an open cover of A. Since A is compact, .# has a finite

subcollection {(—o0,a1),...,(—00,a,)}, which covers A. Let a,, = max{ay,...,a,} € A. Then
n

am & U (—o0,a ]-) = A, which contradicts the fact that a,, € A. Therefore, A must have a largest
j=1
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element, say M € A. A similar argument shows that A has a smallest element, say m € A. Then
m = f(a) and M = f(b), for some a,b € X, and that f(a) < f(x) < f(b), Vx € X. O

Let (X, d) be a metric space. Let A be a non-empty subset of X. The distance from x € X to A
is the real number
d(x, A) :=inf{d(x,a) :a € A}.

Proposition 2.11.26. Let A be a non-empty subset of a metric space (X,d). Then themap ¢4 : X — R
defined by
pa(x) =d(x,A), Vx € X,

is continuous.

Proof. Given any x,y € X, we have

pa(x)=d(x,A) <d(x,a), VaeA,
<d(x,y)+d(y,a), VacA,
= d(x,A)—d(x,y) <d(y,a), Va e A,
S d(x,A) — d(x,y) < d(y, A)
= d(x,A) —d(y, A) <d(x,y).
Interchanging x and y, we have d(y, A) — d(x, A) < d(x,y). Thus, ¢4 is continuous. O

A non-empty subset A of X is said to be bounded if there exists a real number M > 0 such
thatd(ay,ay) < M, V ay,a; € A. The diameter of a non-empty bounded subset A of X is the real
number

diam(A) := sup{d(ay,a) : a1,a; € A}.

Definition 2.11.27. A Lebesgue number of an open cover .# of a metric space (X,d) is a real
number § > 0 such that given any non-empty subset A of X of diameter diam(A) < J, there
exists an element U € .% such that A C U.

Lemma 2.11.28 (Lebesgue number lemma). If (X, d) is a compact metric space, every open cover of
X has a Lebesgue number.

Proof. Let # = {U, : « € A} be an open cover of X. If X € .#, then every positive real
number is a Lebesgue number for .%. Assume that X ¢ .#. Since X is compact, there is a finite
subfamily {U,,, ..., Uy, } C .# that covers X. Consider the map f : X — R defined by

Flx) = % Y d(x,Z)), ¥ x € X,
=1

where Z; := X\ Uy, Vj € {1,...,n}. Since each of the maps x — d(x, Z;) is continuous by
Proposition 2.11.26, it follows that f is continuous. We claim that f(x) > 0, for all x € X. Let

n
x € X be arbitrary. Since X = {J LLXJ., we have x € U,,, for some i € {1,...,n}. Since U,, is
j=1
openin (X, d), there exists a real number € > 0 such that B;(x,€) C U,,. Thend(x,Z;) > €, and
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F

hence f(x) = 1 ¥ d(x, Z;) > €/n > 0. Since f is continuous and X is compact, there exists

=1
xo € X such that f(xg) < f(x), V x € X. We claim that  := f(xp) > 0 is a required Lebesgue

number of .#. Let A C X be such that diam(A) < ¢. Fixa pointa € A. Then A C By(a,d).
Clearly 6 < f(a). Let £ € {1,...,n} be such thatd(a, Zy) = max{d(a, Z;) : 1 < j < n}. Then

1 n
< == Z:) < Z
o< f(ﬂ) n ];d(ﬂ, ]) = d(a/ é)/
and hence B;(a,9) C X\ Z; = Uy,. This completes the proof. O
Definition 2.11.29. Let (X, dx) and (Y, dy) be metric spaces. A map f : X — Y is said to be

uniformly continuous if given any real number € > 0, there exists a real number § > 0 such that

dy(f(x1), f(x2)) < €, whenever dx(x1,x3) < 6.

Note that a uniformly continuous map is continuous, but converse need not be true.

Theorem 2.11.30 (Uniform continuity theorem). Let (X,dx) and (Y,dy) be metric spaces. If X is
compact, then any continuous map f : (X,dx) — (Y, dy) is uniformly continuous.

Proof. Lete > 0be given. Consider the open cover {By, (y,€/2) : y € f(X)} of f(X) C Y. Since
fis continuous, % := {f (B, (y,€/2)) : y € f(X)} is an open cover of X. Since X is compact,
n
there exists y1,...,yn € f(X) such that X = U f~!(By, (yj,€/2)). Since X is compact, by
j=1
Lebesgue number lemma 2.11.28 there exists a real number § > 0 such that given any subset
A of X with diam(A) < 6, we have A C f~1(By, (yj,,€/2)), for some ja € {1,...,n}. Then
given any xq,xo € X with d(xq,x2) < 6, we can have f(x1), f(x2) € By, (y;,,€/2). Therefore,
by triangle inequality we have

dy(f(x1), f(x2)) < dy(f(x1),yj,) +dy(f(x2),yj,)
<e/2+e/2=c¢€.

Therefore, f is uniformly continuous. O

Exercise 2.11.31. Let A and B be two non-empty pairwise disjoint closed subsets of a metric
space (X,d). Let f : X — [0, 1] be the map defined by

__ dxA)
fx) = d(x,A)+d(x,B)

,VxeX.
Show that

(i) f is continuous.
(i) f~1(0) = Aand f~1(1) = B.

(iii) If inf{d(a,b) :a € A,b € B} > 0, then f is uniformly continuous.
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Definition 2.11.32. Let X be a topological space. A point x € X is said to be an isolated point of
X if the singleton subset {x} is an open in X.

Proposition 2.11.33. Let X be a Hausdorff topological space. If x € X is not an isolated point of X,
then for given any non-empty open subset U of X, there exists a non-empty open subset V of X such
that VCUandx ¢ V.

Proof. If x ¢ U, then U being non-empty, there exists a point y € U with y # x. If x € U, then
since X has no isolated points, there exists a pointy € U with y # x. Since X is Hausdorff, there
exists a pair of open neighbourhoods V; and V; of x and y, respectively, such that V, NV, = @.
Note that, W; := U N V; and W, := U NV, are open neighbourhoods of x and y, respectively,
in U such that Wy N W, = @. Then V := Wj is the required non-empty open subset of X such
that x ¢ W,. This completes the proof. O

Theorem 2.11.34. Let X be a non-empty compact Hausdorff space. If X has no isolated points, then X
is uncountable.

Proof. We now show that there is no surjective map f : N — X, which would imply that X
is uncountable. To see this, let f : N — X be any map. Let x, = f(n), V n € IN. Applying
Proposition 2.11.33 to the non-empty open subset U; = X and the point x; = f(1), we can
find a non-empty open subset U, C U; = X such that x; ¢ U,. Suppose that n > 2, and we
have constructed non-empty open subsets U, C U,_1 C --- C Uj such that x,,_1 ¢ U,. Again
by Proposition 2.11.33 we can find a non-empty open subset U, 11 C U, such that x, ¢ U,1.
Thus we have a nested sequence of non-empty closed subsets

ULo2U2o2U; D -+

of X; clearly this has finite intersection property. Since X is compact, it follows from Theorem

2.11.19 that there is a point, say x € [ U,,. Since x,, ¢ U, 1, forall n € N, we see that x # x,,
nelN
for all n € IN. Therefore, the map f : IN — X cannot be surjective. O

Proposition 2.11.35. Any interval in R having more than one points has no isolated points.

Proof. Let I be an interval in R having at least two points. Let a € I be arbitrary. If possible
suppose that the singleton subset {a} C I is open in I. Then there exists an open subset V of R
such that {a} = V N I. Then there exists a 6 > 0 such that (2 —J,a + ) C V. Since I has at least
two points, there exists b € I such that b # a. Then either a < bor b < a. Assume thata < b.
Then either b < a+dora+6 < b. Ifb < a+4,thenb € VNI = {a}, which is not possible
since a # b. Thena+ 4 < b. Since a < a—i—% <a+é6< bandIisaninterval,a—f—% € I. Then
a+$§ € (a—3d,a+6)NI C VNI = {a}, implies that a + § = 4, which is not possible since
d > 0. Similarly, if b < a we get contradiction. Therefore, {a} cannot be open in I, and hence I
has no isolated points. O

Corollary 2.11.36. Any interval in R having more than one point is uncountable. In particular, the
real line R is uncountable.
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Proof. Let I be an interval in R having at least two points, say 4,b € I. Without loss of gener-
ality, we may assume that a < b. Then [a,b] C I. Since [4,b] C R is compact and Hausdorff
and has no isolated points by Proposition 2.11.35, it follows from Theorem 2.11.34 that [a, b] is
uncountable. Then I is uncountable, and hence R is uncountable. O

Exercise 2.11.37. Show that a connected metric space having more than one point is uncount-

able.

Proof. Let (X,d) be a connected metric space with at least two points. Fix a pointa € X, and
consider the map f : X — R defined by

f(x) =d(a,x), VxeX

Note that f is continuous by Proposition 2.11.26. Since X is connected, f(X) is a connected
subspace of R by Lemma 2.9.14. Then f(X) is an interval in R by Proposition 2.9.22. Let b € X
be such that a # b. Since f(a) = d(a,a) = 0and f(b) = d(a,b) > 0, the image set f(X) C Ris
an interval in IR having more than one points, and hence is uncountable by Corollary 2.11.36.
Then it follows that X is uncountable. O

Exercise 2.11.38. Let f : X — Y be a closed map (i.e., image of closed subsets are closed) such
that f~1(y) is compact, forally € Y. If K is a compact subset of Y, show that f~!(K) is compact.

Proof. Let U be an open subset of X such that f~!(y) C U, for some y € Y. Since f is a closed
map, f(X \ U) is closed in Y. Since f~1(y) C U, we see that V, := Y\ f(X \ U) is an open
neighbourhood of y in Y. Since (X \ U) N f~(V})) = @, we conclude that

ffy)cfFi(vy)cu.

Let K be a compact subset of Y. Let {U, : « € A} be an open cover of f ~!(K) in X. For each
y € K, the fiber f~!(y) being compact, we can find a finite subset A, C A such that

iy cly= U U

aENy

Then there exists an open neighbourhood V), C Y of y such that

fﬁl(y) - fﬁl(Vy) C Uy.

Then the collection {V}, : y € K} being an open cover of the compact subset K C Y, we can find
n
Y1,-..,Yn € Ksuch that K C 'Ul Vy,. Then we have
1=

FAER) U (vy) = UUu

i=1 i= 1u¢€Ay

n
Since |J Ay, is a finite subset of A, we conclude that f~1(K) is compact. O

i=1
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Exercise 2.11.39. Let Rx = (R, k), the real line equipped with the K-topology, where K =
{1/n:n € N}

(i) Show that [0, 1] is not compact in Rg.
(ii) Show that Rk is connected.

(iif) Show that Rk is not path-connected.

Proof. (i) For each n € N, fix a real number ¢,, such that %ﬂ <oy < % Set 9 = 1. Then the
collection
U:={(0y41,0n) :n e NU{0}} U ((—-1,2) \ K)

is an open cover of [0, 1] in Rg. Note that ¢/ has no finite subcover.

(ii) O

2.11.1 Limit point compactness

Definition 2.11.40. A topological space X is said to be limit point compact if every infinite subset
of X has a limit point in X.

Proposition 2.11.41. A compact space is limit point compact.

Proof. Let X be a compact topological space. Let K be an infinite subset of X. Suppose on the
contrary that K has no limit points in X. Then K is closed in X. Since X is compact, K is also
compact. Since K has no limit points in X, for each x € K, there exists an open neighbourhood
Vy of x in X such that KN (Vi \ {x}) = @. Then Vy NK = {x}. Since {V, : x € K} is an
open cover of K in X and K is compact, there are finitely many points x1,...,x, € K such that

n
KC U ij. Since KN ij = {xj}, Vij=1,...,n, it follows that K = {x1,...,x,} is a finite set,
j=1
which is a contradiction to our assumption that K is infinite. Therefore, K must have a limit

point in X. O

Example 2.11.42. Let Y be the two points space with only open subsets @ and Y itself, and
let X = IN x Y, where N is equipped with the subspace topology induced from R. Let K be
any infinite subset of X = IN x Y. Given (n,y) € K, note that any open neighbourhood U of
(n,y) in X contains an open neighbourhood V,, := {n} x Y, which intersects K. Therefore, if
(n,y1) € Kand y» # y1 in Y, then (n,y) is a limit points of K. Thus, X is limit point compact.
However, the collection ¥ = {{n} x Y : n € IN} is an open cover of X which has no finite
subcover. Therefore, X is not compact.

Let (x;)neN be a sequence in X. A subsequence of (x,)neN is a sequence (xp, )ken in X,
where (ny)en is a strictly increasing sequence of natural numbers.

Definition 2.11.43. A topological space X is said to be sequentially compact if every sequence in

X has a convergent subsequence.
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Example 2.11.44. A compact topological space need not be sequentially compact. For example,

foreachwa € [0,1] C Rlet X, = [0,1] C R, and consider the product space X := [] X,. Then
a€(0,1]

X is compact by Tychonoff’s theorem. As a set, X consists of all functions f : [0,1] — [0,1].
For each n € N, consider the map f, : [0,1] — [0,1] defined by sending x € [0, 1] to the n-th
place digit x;; of the binary representation of x. Then f, € X, Vn € N, and thus we have
a sequence (fy)en in X. Note that (f,;) has no convergent subsequence. Indeed, given any
subsequence (fy, )xen, let x € [0,1] be the real number such that x; = 0 if and only if k is
even. Then (fy, (x))ken is the sequence whose all even terms are 0 and odd terms are 1, and
hence is not convergent. Therefore, the subsequence (f;, )xeN cannot converges to a function
f:[0,1] — [0,1] in the product space X. Therefore, X is not sequentially compact.

Exercise 2.11.45. Show that the set [0, 1]N equipped with the box topology is not limit point
compact, and hence is not compact.

Answer: Let X = [0,1]N be equipped with the box topology. For each n € N, let f, € [0, 1]N
be defined by

1, if m=n,

fn(m):{O, if m#n.

Note that f, # fu, for m # n. Therefore, A = {f, : n € N} C X is an infinite subset of X. We

claim that A has no limit point in X. Indeed, for eachn € IN, let U, := [] Vj, where
keN

{ 0,1/2), if k#n,
Vi = .
(1/2,1], if k=n.

Then U, is an open neighbourhood of f;; in the box topology on X. Clearly, f,, ¢ U, for m # n.
Therefore, A is a discrete subspace of X. If f € X \ A, then we have the following cases:

Case 1: f(n) € (0,1), forall n € N. Then take U = [] V4, where V; = (0,1) and V} = [0,1],
kelN
for all k > 2. Then U is an open neighbourhood of f (even in the product topology) in

X,butUnA=0.

Case 2: There exists m,n € IN with m # nsuch that f(m) = f(n) = 1. Take V;, = V,, = (1/2,1]
and Vi = [0,1], forallk € N\ {m,n}. Then U = H Vi is an open neighbourhood of

f (even in the product topology) in X, but UN A = @

Case3: f(n) =0, forall n € N. Take V} = [0,1/2), Vk € N. Then U = [] Vj is an open
keIN
neighbourhood of f (in the box topology) in X, but UN A = @.

Therefore, no points of X \ A can be a limit point of A, and hence A is closed in X. Therefore, A
has no limit point in X, since A is discrete. Therefore, X is not limit point compact, and hence

is not compact. O

Theorem 2.11.46. Let X be a topological space. Consider the following statements:

(1) X is compact.
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(ii) X is limit point compact.

(iii) X is sequentially compact.

Then (i) = (ii) always holds. If X is first countable, then (ii) = (iii) holds. If X is metrizable, then (iii)
= (i) holds. In particular, all these statements are equivalent for metrizable topological spaces.

Proof. (i) = (ii): Proved in Proposition 2.11.41.

(i) = (iii): Let X be limit point compact and first countable. Let (x,),en be a sequence in X.
Consider the set A = {x, : n € IN}. If A is finite, then there exists x € A such that x, = x,
for infinitely many n € IN. This gives a constant subsequence of (x;),en which is clearly
convergent. If A is infinite, then X being limit point compact, there is a limit point, say a € X
of A. Since X is first countable by assumption, there exists a subsequence (X, )xeN Of (X1)neN
that converges to a (see Sequence Lemma 2.3.11).

(iif) = (i): Suppose that X is sequentially compact and metrizable. We use the following two

results to show that X is compact.

Lemma 2.11.47. If (X,d) is a sequentially compact metric space, then every open cover of X has a
positive Lebesgue number.

Proof. Suppose on the contrary that there exists an open cover .# = {V, : a« € A} of X that
has no positive Lebesgue number. Then for each n € IN there exists a subset A, C X of
diameter diam(A,) < 1/#n such that A, is not contained in any of the member of .#. Choose
anelement x, € Ay, foreachn € IN. Since X is sequentially compact, (x,, ) <N has a convergent
subsequence, say (X, )reN, converging to a € X. Thena € V,, for some « € A. Since V, is
open in X, there exists a real number € > 0 such that B;(a,€) C V,. Then there exists k € IN
such that nik < €/2and thatd(a, x,, ) < €/2. Then we have

Ay, C By(xp,€/2) C V.

This contradicts our assumption that .# has no positive Lebesgue number. This completes the
proof. O

Lemma 2.11.48. If (X, d) is a sequentially compact metric space, given a real number € > 0 there

n
exists finitely many points x1,...,x, € X such that X = | By(x;,€).
j=1

Proof. Suppose on the contrary that X cannot be covered by finitely many e-balls. Start with a
point x; € X, and choose x; € X \ B;(x1,€) noting that B;(x1, €) cannot cover X. Assume that

n—1 n
n >2,and x, € X is chosen from X\ ( U By(xj,€)). Then choose x,11 € X\ (U Ba(xj,€)).
j=1 =1

Thus we get a sequence (x,),en in (X, d). Since d(x;,x,) > €, for all i # n, we see that

(xn)nen cannot have a convergent subsequence, which contradicts our assumption that (X, d)

is sequentially compact. Therefore, X can be covered by finitely many e-balls. O
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To complete the proof, we start with an open cover .# = {V, : « € A} of X, and use
Lemma 2.11.47 to find a positive Lebesgue number 6 > 0 for #. Set e = % > 0, and use
Lemma 2.11.48 to find a finite open cover {B;(x;€) : x1,...,x, € X} of X by e-balls. Since
diam(Bd(xj, €)) = 2 = 26/3 < 4, by definition of Lebesgue number, each of Bd(x]-,e) is
contained in Va]. € %, for some aj € A. Then {Vy,,..., Vo, } € Z is a required finite subcover

for X. Therefore, X is compact. O

2.11.2 Local compactness

Definition 2.11.49. A topological space X is said to be locally compact at x € X if there exists
a compact subspace Ky C X containing an open neighbourhood Vy C X of x. If X is locally
compact at each x € X then we say that X is locally compact.

Example 2.11.50. (i) Any compact topological space is locally compact.
(ii) R equipped with the discrete topology is locally compact, but not compact.

(iii) Therealline R is locally compact, but not compact. Indeed, given a point x € R, we havea
compact subspace [x — 1, x + 1] C R that contains an open neighbourhood (x —1,x+1) C
R of x. Therefore, R is locally compact. Since the open cover {(n,n+2) : n € Z} of R
has no finite subcover for IR, it follows that IR is not compact.

(iv) The Euclidean space IR" is locally compact. Indeed, given a pointa € R", take K = B(a, 1),
the closed ball in IR” with center 4 and radius 1. This is compact and contains the open
ball B(a,1).

(v) Any non-empty open interval in R is locally compact.
Exercise 2.11.51. Is IR, locally compact?

Exercise 2.11.52. Let f : X — Y be a continuous surjective map of topological spaces.

(i) If X is locally compact, is Y necessarily locally compact?
(if) What if f is open?
Answer: (i) No! Take X = R equipped with the discrete topology so that it is locally compact.

Take Y = IRy, which is not locally compact. Then the identity map Id : Ry — Ry is continuous

and surjective.

(ii) Yes! Because, in this case given f(x) € f(X) = Y, by local compactness of X we can
find a compact subset K C X containing an open neighbourhood V C X of x, and then f being
continuous and open, f(K) is a compact subspace of Y containing the open neighbourhood
f(V)of f(x) €Y. O

Exercise 2.11.53. Let 77 and 17 be the subspace topologies on

Rsp:={teR:t>0} CR
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induced from the Euclidean topology and the lower limit topology on IR, respectively. Which
of the spaces (R>o, 71) and (R>q, Tp) are locally compact?

Exercise 2.11.54. Let 7y and 7, be two topologies on a non-empty set X. Suppose that 77 C 1.
Prove or give counter examples of the following.

(i) If (X, 1) is compact, so is (X, 77).
(ii) If (X, 12) is locally compact, so is (X, 17).

Proposition 2.11.55. If X and Y are locally compact topological spaces, so is their product X x Y.

Proof. Let (x,y) € X x Y be given. Since X and Y are locally compact, there exist compact
subsets K C X and L C Y and open neighbourhoods U C X and V C Y of x and y, respectively,
such that

(x,y) eUxV CKxL.

Since U x Visopenin X X Y and K x L is compactin X x Y (see Theorem 2.11.17), we conclude
that X x Y is locally compact. O

Exercise 2.11.56. Show that any non-empty open subset of R" is locally compact.

Proposition 2.11.57. Let X be a Hausdorff topological space. Then X is locally compact if and only if
for given any point x € X, there exists an open neighbourhood V of x in X whose closure V in X is
compact.

Proof. Suppose that X is locally compact. Let x € X be given. Then there exists a compact
subset K of X that contains an open neighbourhood, say V, of x. Since X is Hausdorff, K is
closed in X by Corollary 2.11.10. Since V C K and K is closed in X, we have V C K. Then V is
compact by Lemma 2.11.8. Converse part is trivial. O

Exercise 2.11.58. Show that Q is not locally compact. (Hint: Use Proposition 2.11.57).
Exercise 2.11.59. Show that RN is not locally compact in the product topology on it.

Exercise 2.11.60. Let S' := {(x,y) € R? : x> +y? = 1} C R?. Show that the map f : (0,1) — S!
defined by
f(t) = (cos2rmt, sin2mt), Vt € R,

is a homeomorphism of (0,1) onto S\ {(0,0)}. Construct a homeomorphism g : R — (0,1),
and precompose it with f to get a homeomorphism of R onto the subspace S* \ {(0,0)}.

Example 2.11.61. Let X be the Euclidean space R"”, where n > 2. Givena pointx = (x1,...,x,) €
R", foreach j € {1,...,n} there exists a compact subspace [x; — 1, x; + 1] C R that contains an
open neighbourhood (x; —1,x; + 1) of x;. Then K = [x; — 1, x; + 1] x - -- X [xy — L, xy + 1] C
R" is a compact subspace of R" containing an open neighbourhood (x1 —1,x1 +1) X - x (x, —
1,x, + 1) of x. Therefore, R" is locally compact. However, R" is not compact, because the open
cover {B(0,n) : n € N} of R" has no finite subcover.
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Exercise 2.11.62. Fix an integer n > 2. Consider the unit n-sphere
S" = {(xq,...,xy) ER" a2 ... 442 =1} C R",

in R"*1. Show that S" is compact and Hausdorff. Use stereographic projection map to con-
struct a homeomorphism of R” onto the punctured n-sphere S” \ {x}, where x € S" is a chosen
point.

Theorem 2.11.63. A topological space X is locally compact and Hausdorff if and only if there exists a
topological space Y satisfying the following properties:

(i) Y contains X as a subspace,
(ii) Y \ X is singleton, and

(iii) Y is compact and Hausdorff.

If Y and Y' are two topological spaces satisfying the above three properties, then there exists a unique
homeomorphism f : Y — Y’ such that f |X = Idyx.

Proof. Step 1 (Uniqueness): Suppose that Y and Y’ are two topological spaces satisfying the
above three properties. Suppose that Y \ X = {*} and Y’ \ X = {+'}. Defineamap f: Y — Y’

by
, if € X,
fy) ={ y, Y

¥, if y=x

Clearly f is a bijective map such that f| y = Idx. Since Y and Y’ are T1 spaces by assumption,
that X is open in both Y and Y. Let U C Y be an open subset. If * ¢ U, then U C X,
and hence f(U) = Uisopenin Y. If x € U, then Z := Y\ U C X, and hence f(Z) = Z.
Since Z is closed in the compact space Y, it is compact. But Z C X and X C Y’. Therefore,
Z is a compact subspace of the Hausdorff space Y/, and hence is closed in Y’. Then f(U) =
f(Y\Z) =Y\ f(Z)=Y"\ZisopeninY'. Thus, f is an open map. Interchanging the roles of
Y and Y’ we see that f ! is also open. Therefore, f is a homeomorphism.

Step 2 (Construction of Y): Let X be locally compact and Hausdorff. Let * be any object that is
not an element of X, and let Y := X U {x}. Let Tx be the collection of all open subsets of X. Let

Ty := Tx U{Y \ K: K is a compact subspace of X}.

We show that 7y gives a topology on Y.

Let U, V € 1y be arbitrary. We show that UNV € Ty.
Case1: If U,V € g, thenUNV € 7 C 1.
Case 2: If U € tx and V = Y \ K, for some compact subspace K of X, then UNV = UN (Y \
K) = UN(X\K). Since K is a compact subspace of X and X is Hausdorff, K is closed in X,
and hence X \ Kisopenin X. ThenUNV =UN (X \K) € t7x C 1y.
Case 3: If U = X\ Ky and V = Y \ Kj, for some compact subspaces K; and K, of X, then
UunvV =Y\ (KyUK;) € 1y, because Ky UKj is a compact subspace of X. Thus, 1y is closed
under finite intersection.
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Let % = {Vy : « € A} be an indexed family of objects from 7y. We show that |J V, € Ty.

aEN
Case1: If Vy € tx, Va € A, then U V, € 7x C 1y.
aeEN
Case 2: If each V, is of the form V, = Y\ K,, for some compact subspace K, of X, then |J V, =
aEA
Y\ ( N Ka) . Since K, is a compact subspace of the Hausdorff space X, it is closed in X, and
aEN

hence | Kyisclosedin X. Since (| Kj is a closed subset of a compact space K B/ where § € A,

aEN aEN
it is compact. Therefore, |J Vo =Y\ ( N K,X> € Ty.

aEA aEA

Case 3: Let A = Ay U Az and A1 N Ay = @, and suppose that V, € Tx, Va € Ay and Vg =

Y\Kﬁ, forall B € Ap. ThenU := |J Vi € txbycasel,and V := U Vg = Y\ K, for
IXEA1 ﬁEAZ

some compact subspace K of X, as discussed in case 2. Then |J V, = UUV € 1y by case 2.
xEA
Therefore, Ty is closed under arbitrary union. Therefore, Ty is a topology on Y.

Step 3 (X is a subspace of Y): Let V € Ty be arbitrary. If V € 7x, then VNX =V € 7x. If
V ¢ 1x, then V = Y\ K, for some compact subspace K of X. Then VNX = (Y\K)NX =
(X\ K)NX € 1%, since K being a compact subspace of the Hausdorff space, K is closed in X,
and hence X \ K is open in X. Therefore, the subspace topology on X induced from Y coincides
with the topology on X. Thus, X is a subspace of Y.

Step 4 (Y is compact): Let = {V,, : « € A} be an open cover of Y. Then there exists ag € A
such that * € V. Clearly V,, =Y \ K, for some compact subspace K of X. Then the collection
of all V,,’s that does not contain * forms an open cover of X, and hence of the compact subspace
K of X. Then we can choose finitely many such objects, say V,, ..., Vi, from % that covers K.
Then {Vyy, Vay,- -, Va, } € % is a finite subcover of Y. Therefore, Y is compact.

Step 4 (Y is Hausdorff): Let x, y € Y be two distinct points. If x, y € X, then X being Hausdorff
we can separate them by a pair of disjoint open neighbourhoods of them in X, and hence in
Y. If y = %, then x € X. Since X is locally compact we can find a compact subspace K of X
containing an open neighbourhood V C X of x. Then U := Y \ K is an open neighbourhood of
* in Y disjoint from the open neighbourhood V' of x. Therefore, Y is Hausdorff.

Step 5 (Converse part): Suppose that there is a compact Hausdorff topological space Y that
contains X as a subspace of it and Y \ X = {x} is singleton. Since Y is Hausdorff, it is a T1
space, and hence Y \ X is closed in Y. Then X is open in Y. Clearly X is Hausdorff. Let x € X
be arbitrary. Then Y being Hausdorff, there is a pair of disjoint open neighbourhoods U and V
of x and , respectively, in Y. Since K := Y \ V is a closed subspace of the compact space Y, it
is compact. Since K C X, K is a compact subspace of X. Clearly x € U C K. Therefore, X is
locally compact. This completes the proof. O

Definition 2.11.64. Let X be a topological space that is not compact. A compactification of X is
a compact topological space Y containing X as its subspace such that the closure of X in Yis Y
itself. If Y is a compactification of X such that Y \ X is a singleton subset of Y, then Y is called
an one-point compactification of X.

Exercise 2.11.65. Find the one-point compactification of the closed interval [4,b] C R, when it
is equipped with the subspace topology induced from R.
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Exercise 2.11.66. Let f : X; — X be a homeomorphism of locally compact Hausdorff spaces.
Let Y7 and Y, be one-point compactifications of X; and X», respectively. Show that there is a
unique homeomorphism f: Y7 — Y5 such that ﬂ X = f.

Proof. Let Y1\ Xq = {*1} and Y2 \ X, = {#,}. Define amap f : Y; — Y; by setting

*2, 1 Y = *1.

Since f is bijective, so is f. Clearly f is the unique bijective map from Y; onto Y, such that
]7|X1 = f. Let V be an open subset of Y;. If ¥, ¢ V, then V C X,,and hence f~1(V) = f~}(V) C
X7 is open in X7, and hence is open in Y3, since X isopenin Yj. If ¥ € V, then V = Y, \ K, for
some compact subspace K of Xp. Then f~1(V) = f~1(Y2) \ f"1(K) = Y1 \ f}(K). Since f is a
homeomorphism and K is compact in X5, its inverse image f~!(K) is compact in X7, and hence
in Y;. Therefore, f~1(V) is open in Y;. Therefore, f is continuous. By symmetry, the same

argument applied to /! shows that 1 is continuous. Therefore, f is a homeomorphism. [

Exercise 2.11.67. Let X be a locally compact Hausdorff space with the one-point compactifica-
tion X. Let Y be a locally compact Hausdorff space. Fix a point g € Y, and let f : X — Y be
a continuous map such that f~!(K) is compact for all closed subset K of Y not containing .
Show that there is a unique continuous map f: X — Y such that ﬂ <=/

Exercise 2.11.68. Show that one-point compactification of IR is homeomorphic to the unit circle
St in R%.

Proof. Note that the maps f : R — (—1,1) and g : (—1,1) — (0,1) defined by
s

+ [s]
and g(t) := %t, Vie (-1,1),

f(s):1 , Vs eR,
1

are homeomorphisms (verify!). Note that the map f : (0,1) — S! by
h(u) = 2Ty € (0,1),
is a homeomorphism onto its image in S'. Therefore, the composite map
hogof:R — S!

is a homeomorphism of R onto its image S' \ {(1,0)} C S'. Moreover, S! is compact and
Hausdorff. Therefore, S! is homeomorphic to the one-point compactification of R. O

Exercise 2.11.69. Find the one-point compactification of R” \ {0}. Show that it is path-connected,
foralln > 1.

Exercise 2.11.70. Equip IN with the subspace topology induced from R. Show that one-point
compactification of N is homeomorphic to {1/n:n € N} U {0} C R.
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Proof. Defineamap f:IN — X :={1/n:n € N}U{0} C Rbysendingn € Nto f(n) :=1/n.
Clearly f is an injective map with X \ f(IN) = {0}. Since the topology on IN is discrete, f is
continuous. Since X is compact and Hausdorff, it follows that X is homeomorphic to one-point
compactification of IN. O

Exercise 2.11.71. Let H be a subgroup of a locally compact topological group G. Show that the
quotient space G/H = {gH : g € G} (which need not be a group) is locally compact.

Proof. Let w : G — G/ H be the quotient map. Since 7t is continuous, surjective and open by
Exercise 2.8.9, it follows from Exercise 2.11.52 that G/ H is locally compact. O

We say that a topological space X has property P locally if for each x € X, every open
neighbourhood U, C X of x contains a neighbourhood V; of x that has property P. For ex-
ample, local connectedness, local path-connectedness etc. are local property. However, the
definition of local compactness given in Definition 2.11.49 is not “local” in nature, in general.
Nevertheless, the following proposition says that local compactness is indeed a local property
for a Hausdorff space.

Proposition 2.11.72. Let X be a Hausdorff topological space. Then X is locally compact at x € X if
and only if given any open subset U C X containing x, there exists an open neighbourhood V C X of x
such that V is a compact subspace of X and that V C U.

Proof. Let X be a Hausdorff space. Suppose that X is locally compact. Let Y be the one-point
compactification of X, and let Y \ X = {x}. Let x € X be arbitrary. Let U be an open neigh-
bourhood of x in X. Since Y is Hausdorff, X = Y\ {*} is open in Y, and therefore, U is open in
Y. Then K := Y\ U is a closed subspace of the compact space Y, and hence is compact. Since
Y is a Hausdorff space, there exist open subsets V and W of Y such that x € V, K C W and
VNW = @. Let V be the closure of Vin Y. Then VN K = @, and hence V C U. Since Y is
compact and V is closed in Y, V is compact.

Conversely, suppose that for each x € X and an open neighbourhood U of x in X there
exists an open neighbourhood V of x in X such that V is compactand V C U. ThenK = Vis a
compact subspace of X containing the open neighbourhood V of x in X. Therefore, X is locally

compact. O

Corollary 2.11.73. An open or a closed subspace of a locally compact Hausdorff space is locally compact
and Hausdorff.

Proof. Let X be a locally compact space. Let A be a closed subspace of X. Then for givena € A,
there exists a compact subspace K of X containing an open neighbourhood V C X of x. Then
ANV is an open neighbourhood of 2 in A contained in A N K. Since A is closed in X, ANK
is a closed subspace of the compact space K, and hence AN K C A is compact. Thus, ANV is
an open neighbourhood of a in A contained in the compact subspace A N K of A. Thus, A is
locally compact. Note that, here we have not used Hausdorff property of X.

Assume that X is a locally compact Hausdorff space, and A is openin X. Leta € A. Since A
is an open neighbourhood of a in X, by Proposition 2.11.72 there exists an open neighbourhood



98 Chapter 2. Point Set Topology

V of a in X such that V is a compact subspace of X and V C A. Then K = V is a required
compact subspace of A containing an open neighbourhood V of a in A. Thus, A is locally
compact. O

Corollary 2.11.74. A topological space X is homeomorphic to an open subspace of a compact Hausdorff
space if and only if X is locally compact and Hausdorff.

Proof. If X is locally compact and Hausdorff then we can take Y to be the one-point compacti-
fication of X. Then Y is a compact Hausdorff space that contains X as its open subspace.

Conversely, suppose that X is homeomorphic to an open subspace of a compact Hausdorff
space Y. Then X is locally compact and Hausdorff by Corollary 2.11.73. O

Exercise 2.11.75. (i) Let p : X — Y be a quotient map of topological spaces. If Z is a locally
compact Hausdorff space, show that the map

n:=pxldz: XxZ —YxZ

is a quotient map (c.f. Exercise 2.6.15).

(ii) Letp; : X1 — Yjand pp : Xp — Y, be quotient maps of topological spaces. If Y7 and X, are
locally compact and Hausdorff, show that the product map p; x p2 : X1 X Xo = Y1 X Y2
is a quotient map.

Proof. (i) Since p is continuous and surjective, it follows from Corollary 2.4.11 that 77 := p x
Idz : X x Z — Y x Z is continuous and surjective. Let A C Y x Z be such that 7~ 1(A) is
open in X x Z. We show that A is open in Y x Z. Assume that A # @. Let (y,z) € A be
given. Since p is surjective, there exists (x,z) € X x Z such that w(x,z) = (p(x),z) = (y,2).
Since 17 !(A) is open in X x Z, there exists open neighbourhoods U; C X and V; C Z of x
and z, respectively, such that (x,z) € U; x V; C 7t~ !(A). Now by Proposition 2.11.72 we can
find an open neighbourhood V of z such that V is compact and V C Vj. Since 7t(U; x V) =
p(Uy) x V.C A, wehave p~'(p(U;)) x V C w1 (A). For each x € p~!(p(U;)), applying Tube
Lemma 2.11.14 to the slice {x} x V we can find an open neighbourhood U, C X of x and an
open subset Vy C Z such that

{x} xV C U, x Vi C 1w H(A).

Then U, := U Uy, is an open subset of X containing p~!(p(U;)) such that
xep~(p(U))
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Then U := (J U, is an open subset of X such that
nelN

(x,z) eUxV C w 1(A).

Since 71 (7t(U x V)) = p~1(p(U)) x V = U x V, it follows that 7t(U x V) is an open neigh-
bourhood of (y, z) contained in A. Therefore, A is openinY x Z.

(ii) Since the following diagram commutes,

P1 XIdX2
X1 X Xp Yl x Xo
\ ildyl X P2
P1Xp2
Xz X Yz,
the result follows from part (i) and Exercise 2.6.14. O

2.11.3 Net & Tychonoff’s Theorem

A directed set is a partially ordered set (I, <) such that given any two elements i,j € I there
exists k € [ such thati < kandj <k.

Definition 2.11.76. A net in X isamap f : [ — X, where (I, <) is a directed set. Like a
sequence, we usually denote by x, the image f(«) of & € I, and express a net as (Xy)qe]-

A net (x)qeg in X is said to converge to a point x € X, written as (x4 )ac; — X, if for given
an open neighbourhood U C X of x there exists an element aj; € I such that xg € U, for all
B € I satistying ayy < B.

Remark 2.11.77. Clearly, any sequence is a net but not the other way around. If (I, <) is equal
to (IN, <), then the notion of net and its convergence coincides with the notion of a sequence

and its convergence.

Exercise 2.11.78. Let X and Y be two topological spaces. Let (x4)qe; and (ya)acs be two nets
in X and Y, respectively, indexed by the same directed set (I, <). If (x4)4e; converges to x in
X and (ya)aer converges to y in Y, show that the net ((xa,ya)),c; converges to (x,y) in the
product space X x Y.

Proposition 2.11.79. In a Hausdorff space X a net (xy)ye1 can converge to at most one point of X.

Proof. Suppose on the contrary that (x,),ec; converge to x and y in X, where x # y. Since X is
Hausdorff, there exists a pair of open neighbourhoods V; and Vj, of x and y, respectively, such
that Vy NV, = @. Then by definition of convergence of a net in X, there exist ag, o € I such
that

g <a = x,€Vy, and Bp < = xg € Vy.

Since (I, <) is a directed set, there exists y € I such thatag < yand By < 7. Thenx, € V, NV,
But this is not possible, since Vy NV, = @. O
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Theorem 2.11.80. Let A C X. Then x € A if and only if there exists a net (x4)qeq of points of A
converging to x.

Proof. Suppose that there is a net (x4 ), Of points of A that converges to x € X. Let U C X be
an open neighbourhood of x. Since (x4),e; — X in X, there exists & € I such that x, € U, and
hence ANU # @. Thus, x € A.

Conversely, suppose that x € A. If x € A, then we can take the constant sequence (xy),eN;,
where x, = x, V n € IN, that clearly converges to x in X. Suppose that x € A \ A. Let

Iy := {V : V is an open neighbourhood of x in X}.

Given V1, V; € Iy, we define V; < V, if V, C V4. Then (Iy, <) is a partially ordered set. Given

Vi,V € I, V:= V1NV, € I, and itsatisfies V1 < V and V, < V. Therefore, (I, <) is a directed
set. Since x € A, for each open neighbourhood V € I of x in X, we can choose an element
xy € AN V. Thus we have a net (xy)yey, of points of A. Given any open neighbourhood U of
xin X, U € I,. Thenif V € [, with U < V, then V C U and hence xy € V implies xy € U.

Thus the net (xy)yej, converges to x in X. O

Corollary 2.11.81. Let A C X. Then A is closed in X if and only if limit point of every convergent net
of points of A is in A.

Definition 2.11.82. Let (I, <) be a directed set. A subset | C I is said to be cofinal in (I, <) if
for each i € I, there exists j € | such thati < j.

Proposition 2.11.83. If | is a cofinal subset of (I, <), then the partial order relation induced from
(I, <) makes (], <) a directed set.

Proof. Clearly (], <) is a partially ordered set. Given ji, j» € ], there exists i € I such thatj; <i
and j, < i. Since ] is cofinal in (I, <), there exists j € ] such that i < j. Then by transitivity of
the partial order relation we have j; < jand j, <. O

Definition 2.11.84. Let (I, <) be a directed set, and let f : [ — X be a net in X. A subnet of
points of X is a composite map fog: ] — X, where (], <) is a directed setand g : ] — I'is a
map satisfying the following properties:

(i) « < Bin (], <) implies that g(a) < g(B) in (I, <), and
(ii) the subset ¢(J) = {g(a) :a € J} C I'is cofinalin (I, <).

Proposition 2.11.85. Ifa net (xy),c1 in X converges to x € X, so is any of its subnet.

Proof. Let f : I — X be a net in X indexed by a directed set (I, <). Let f o g be a subnet of f,
where g : | — [ is a map of directed sets satisfying the conditions (i) and (ii) as in Definition
2.11.84. Let U be an open neighbourhood of x in X. Since f converges to x, there exists & € I
such that f(B) € U, for all B € I satisfying « < B. Since g(]) is cofinal in (I, <), there exists
j € J such that « < g(j). Then for any k € J with j < k we have a < g(j) < g(k). Then we have
(fog)(k)) € U, for all k € ] satisfying j < k. Therefore, the subnet f o ¢ converges to x. O
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Definition 2.11.86. Let (x4).ecr be a net in X. A point x € X is said to be an accumulation
point (or, cluster point) of (xa)scy if for given any open neighbourhood U C X of x the subset
Iy:={a €1:x, € U}iscofinalin (I, <).

Lemma 2.11.87. A point x € X is an accumulation point of a net (xa)yey in X if and only if there

exists a subnet of (X ) ey cOnverging to x.

Proof. Let x € X be an accumulation point of anet f : (I, <) — X in X. For notational simplic-
ity, we write f as (xq)qe1, Where x, := f(a), V & € I. Then for given any open neighbourhood
U of x in X, the subset

Iy:={a€l:x, €U}

is cofinal in (I, <). Let
K := {(a,U) : U is an open neighbourhood of x and « € Ij;}.
Given («,U), (B, V) € K, we define
(e, U) < (B, V) ifa<Bin([,<)and V C U.

Clearly (K, <) is a partially ordered set. Since (I, <) is directed,for given (a, U), (B, V) € K,
there exists v € I such thata < yand g < . Let W := UN V. Then W is an open neighbour-
hood of x in X with W C U and W C V. Since Ijy := {6 € I : x; € W} is cofinal in (I, <), there
exists & € Iy such that v < 4. Then (6, W) € K and it satisfies

(a,U) < (5,W) and (B, V) < (6,W).
Therefore, K is a directed set. Define a map g : K — I by
g((a,U)) =a, V(aU) €K

Then we have

() g((a,U)) <g((BV))if («,U) < (B, V) in (K, <), and

(i) g(K) = Iis cofinal in (I, <).

Therefore, f o g : K — X is a subnet of the net f : I — X. We claim that f o g converges to x

in X. Given any open neighbourhood U of x in X, there exists « € Iy := {a € I : x, € U}

such that («, U) € K. If (B, V) € K satisfies (¢, U) < (a € I : x, € U} such that (a,U) € K. If

(B, V) € K satisfies (a,U) < (B, V) inK, then g(B,V) = f(B) € V C U. Therefore, the subnet
Xo(a,U) (e )eK converges to x in X.

Conversely, suppose that (xy)xes has a subnet (x4(5))gek that converges to x in X. Let U be
any open neighbourhood of x in X. Then there exists iy € K such that x,5) € U, V > Bu
in K. Since g(K) C I is cofinal in (I, <), for given any a € I there exists B, € K such that
g(Ba) > a. Since (K, <) is directed, there exists v € K such that B, < 7y and By < 7. Then
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g(7) = g(Ba) = ain (I, <) and that x,(,) € U. Therefore, the subset Iy := {a € I : x, € U}1is
(I,

cofinal in (I, <), and hence x is an accumulation point of (x4 )ser in X. O

Theorem 2.11.88. A topological space X is compact if and only if every net in X has a convergent
subnet.

Proof. Let X be a compact topological space. Let (I, <) be a directed set and let f : I — X be
a net in X, which we write as (x4 )qej, for notational simplicity. For each a € I, consider the
subset

F, .= {xﬁzﬁelwithtxgﬁ}gX.

Since (I, <) is a directed set, given a finite number of points «y,...,a, € I, there exists &« € I

n n ___ —_
such thatw; < a, Vi€ {1,...,n}. Thenx, € N Faj, and hence N F,X], # @, where F, denotes
=1 j=1

the closure of F, in X. Thus the collection .# := {F, : « € I} of closed subsets of X satisfies

finite intersection property. Since X is compact, there exists a point x € ) F,. In view of
ae]

Lemma 2.11.87 it suffices to show that x is an accumulation point of the net (x4),ej. Let U be
an open neighbourhood of x in X. We need to show that the subset

Iy:={yel:x,cU}

is cofinal in (I, <). For this let &« € I be given. Since x € F,, we can choose xg € UNFy, for
some > ain (I,<). Then p € Iy := {7y € I : x, € U}, and hence the subset [ is cofinal in
(1,<).

Conversely, suppose that every net in X has a convergent subnet. Let .# = {F, : « € A} be
an indexed family of non-empty closed subsets of X satisfying finite intersection property. Let
9 be the set of all possible finite intersections of members from .%. Then all members of ¥ are
non-empty by assumption on .#. Therefore, given Z € ¢ we can choose an element xy € Z.
This definesamap f : 4 — X. Given Z1, Z, € ¢4, we say that

7y < Zy if Zo C 7.

Clearly (¢, <) is a partially ordered set. Given Z1,Z; € ¢, the subset Z3 := Z1 N Z; € ¢ and
satisfies Zy < Zz and Z, < Z3. Therefore, (¢, <) is a directed set, and hence (xz)zcw is a net
in X. Then by assumption, it has a convergent subnet, which produces an accumulation point,

say x € X, of the net (xz)zc. We show that x € | F,. Let U be an open neighbourhood of x
aEA
in X. Since x is an accumulation point of the net (x7)zc, the subset

gu::{ZE%:xZEU}

is cofinal in (¢, <). Since .# C ¥, for given w € A there exists Z € ¢ such that F, < Zin (¥4, <)
and that xz; € U. Since xz € Z and Z C F, by construction, we have xz € U N F,. Therefore,

x € F, = E,. Since this holds for all &« € A, we see that x € () F,. In view of Theorem 2.11.19
aEA
this completes the proof. O
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Let {X, : « € A} be an indexed family of topological spaces, and let X := [] X, be the
aEA
associated product topological space. Given a subset I' C A, it follows from the universal

property of product that the indexed family of continuous maps {77, : X = X, },cr gives rise
to a unique continuous map

Nr!X—)Han
yel

such that p,, o iy = m,, where p, : [] X; — X, is the projection map onto the --th factor, for
éer

ally eT.

By a partially defined element f of the product space X = [] X, we mean an element f €
aeEN
IT X, where I' C A; in this case, we say I' the domain of definition of f, and we express it
yel

symbolically by Z(f) = I'. Note that, given a subset I' C A, an element f € X defines a
partially defined element

f|r:: nrof,

of X with domain I', which we may call the restriction of f on I' (note the abuse of notation and
terminology). However, given a partially defined element of X, in general, there is no unique
choice of g € X whose restriction over I is f.

Let (fi)ic; beanetin X = J] X,. A partially defined element f of X with domain T C A is

aeA
said to be a partial accumulation point of the net (f;);c; in X if f is an accumulation point of the

restricted net (fi|.)ier in TT Xy
Y€l

Corollary 2.11.89 (Tychonoff’s Theorem). [Chernoff] Let {X, : « € A} be an indexed family of

compact topological spaces. Then the product X := [ X, is compact in the product topology.
aEA

Proof. Let X = T] X, be equipped with the product topology. Let (I, <) be a directed set and
aeA

p:(,<) —X

anet in X. For notational simplicity, we sometimes write it as (f;);c;, where f; := ¢(i), Vi € .

We use Zorn’s lemma to show that (f;);c; has a convergent subnet.

Let & be the set of all partial accumulation points of the net (f;);c;. Since each X, is com-
pact, it follows from Theorem 2.11.88 that the restricted net ( fil () OO {a} € A has an
1€

accumulation point in X, and hence the set & is non-empty. Given f, g € &, we define

f<g if 2(f) C 2(g) and 8’@@:) =f. (2.11.90)

Clearly this is a partial order relation on .

Let ¢ = {f; : t € T} be a totally ordered subset of (%7, <). Then any two members of

¢ agree on the common parts of their domains. Let D := | Z(f;) € A. Define a map
teT

f:D — [I Xybysendinga € Dto fi(a)ifa € D(fi). lfa € 2(fi) N 2(fy), forsomet, t' € T,

x€D
then the set ¢ being totally ordered, either f; < fy or fy < f;, and hence fi(a) = fy(a) by
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definition of the partial order relation on & given in (2.11.90). Therefore, f is a well-defined

element of [] X,, which we write symbolically as
acD

fZ: Uft

teT

Clearly f is a partially defined element of X. We show that f € &, i.e,, a partial accumulation
point of X. To see this, note that any basic open neighbourhood U of f in the product topolog-

ical space [] X, is finitely supported (i.e., U = [] U,, where U, is an open subset of X, and
aeD aeD
Uy # Xq, for all a in a finite subset Supp(U) C D). Since ¢ = {f; : t € T} is a totally ordered

subset of Z and f = | fi, it follows that Supp(U) C 2(f,), for some t;; € T. Since fy, is a
teT

partial accumulation point of the net (f;);c; and that fy | Supp(U) = 1l Supp(U)’ it follows that f is
a partial accumulation point of the net (f;);cy, i.e., f € . Clearly f is an upper bound of ¢ in

& . Therefore, by Zorn’s lemma & contains a maximal element, say g.

To complete the proof, it suffices to show that 2(g) = A. Suppose on the contrary that
2(g) # A. Choose an index « € A\ Z(g). Since g is a cluster point of the restricted net

fil 29)) in J] X, thatgisa limit point of a subnet, say
€ ee(y)
=g
4 2(3)
oy (<) (L,<) > 11 X

of the restricted net (f;| 9(9) )ic1- Since X, is a non-empty and compact, the net

$o lp‘{,x} = T (P oY)

in X, (note the abuse of notation, which possibly reduces confusion a bit!) has a cluster point,
say xy € X4. Define a map

h:2(g)U{a} — ] X
Be2(g)u{a}

by setting
hp) = { $(B), ifpE(3),

Xa, if B =a.
Clearly h € I Xp and it is a limit point of the net (¢ o ¢ which is a subnet of

)|0 al’
BeZ(g)U{a} 2(g)u{a}

4)‘@(g)u{tx} - (ﬁ‘Q(S)U{“})iGI

in I1 Xg. Therefore, h € & and ¢ < h, which contradicts maximality of ¢ in &.
pe7(g)Uia}
Therefore, we must have Z(g) = A, and hence g is a cluster point of the net (f;);c; in the

product space X = [] X,. This completes the proof. O
aEA
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2.12 Second countability and separability

Recall that a topological space X is first countable if for each x € X there is a countable
collection %, of open neighbourhoods of x in X such that given any open neighbourhood U
of x in X, there exists V € %y such that V C U. A topological space X is said to be second
countable if it has a countable basis for its topology.

Example 2.12.1. (i) A second countable space is first countable.
(ii) Any metric space is first countable.
(iii) The set R, equipped with the discrete metric 4, is not second countable.
(iv) The Euclidean space R" is second countable, for all n € IN.
(v) The space IRy is first countable, but not second countable.
Lemma 2.12.2. (i) Subspace of a first countable space is first countable.
(ii) Countable product of first countable spaces is first countable.
(iii) Subspace of a second countable space is first countable.

(iv) Countable product of second countable spaces is first countable.

Proof. (i) Let X be a first countable space, and let Y be a subspace of X. Giveny € Y, we have a
countable local basis, say By, of X aty. Then B}, := {VNY : V € By} is a countable collection
of open neighbourhoods of ¥ in Y. Given an open neighbourhood, say U of y in Y, we have
U = WnNY, for some open neighbourhood W of y in X. Then there exists V € B, such that
VCW.ThenVNY C U, and hence B; is a countable local basis for Y at y. Therefore, Y is first
countable.

(ii) Let {X,, : n € IN} be a countable family of first countable spaces, and let X := ] X, be
n€N
the associated product topological space. Let x := (x1,x2,...) € X be given. For each n € IN,

let By, be a countable local basis for X, at x,, € X;,. Let By be the set of all subsets of X of the

form
H Vi’l/
nelN

where V,, € By, for all n € F, for some finite subset F of N, and V;, = X, forallm € IN'\ F.

Given an open neighbourhood, say O of x in X, we can find a basic open subset, say [] Uy,
nelN
of x in X such that
X € H u, C o;
neN

where U, is open in X;, for all # € IN, and there is a finite subset, say F C IN, such that
U, # X,, Vn € F. Since for each n € F, we have x, € U, there exists V,, € By, such that

Xn € Vi C Uy. Then for each m € IN \ F, setting V;, = X, we see that V := [] V;, € By and
nelN
thatx € V C [T U, C O. Therefore, B, is a countable local basis for the product space X at x,
nelN
and hence X is first countable.

Proofs of (iii) and (iv) are similar (in fact, simpler to write) to that of (i) and (ii). O
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A subset A of X is said to be dense if A = X. It is straight-forward to see that a subset A C X
is dense in X if and only if given any non-empty open subset U of X, we have UN A # .

Definition 2.12.3. A topological space X is said to be

(i) a Lindeldf space if every open cover of X has a countable subcover.
(if) separable if it has a countable dense subset.

Remark 2.12.4. Any compact topological space is Lindelof, however the converse is not true.
For example, R is a Lindelof space (why?), but not compact.

Example 2.12.5. A separable space need not be Lindelof. To see this, let X be an uncountable
set. Fix a point, say x¢ € X, and define a topology on X by declaring a subset U C X to be open
if and only if either U = @ or xg € U. Then {xp} is dense in X, and hence X is separable. Since
{x0,x} is openin X, V x € X, it follows that X is neither first countable nor Lindel6f (verify!).

Example 2.12.6. A Lindelof space need not be separable. To see this, let X be an uncountable
setand letY = X U {x}, where * ¢ X. For each x € X, we declare {x} tobeopenin Y. IfU C Y
and * € U, we declare U to be open in Y if Y \ U is countable. Verify that this gives a topology
on Y. Let U be an open cover of Y. Then p € U, for some U € U. By construction of the
topology on Y, we have Y \ U is countable. For each x € Y \ U, we may choose an element, say
Vy € U such that x € Vy. Then the subcollection {V, : x € Y\ U} U{U} is a countable subcover
of U. Therefore, Y is Lindelof. If A is a countable subset of Y, then X being uncountable there
exists x € X such that x ¢ A. Then {x} is open in Y which does not intersects A, and hence A
cannot be dense in Y. Therefore, Y is not separable.

Proposition 2.12.7. A topological space X is Lindelof if and only if every basic open cover of X has a
countable subcover.

Proof. Fix a basis B of open subsets for X. Let U be an open cover of X. For each x € X, choose
an element U, € U such that x € U,. Then we can choose V, € B such that x € V, C U,. Then
the collection B’ := {V, : x € X} is an open cover of X consisting of basic open subsets of X,
and hence by assumption on X it admits a countable subcover, say B, := {Vn n e IN}. Then

for each n € IN, we choose one U,, € U such that V,, C U,. Since |J V, = X, it follows that
nelN
{U, : n € N} is a countable subcover of U. Therefore, X is Lindelof. O

Proposition 2.12.8. Any second countable space is Lindeldf and separable.

Proof. Let X be a second countable space. Let B = {V}, : n € IN} be a countable basis for X.

Let U be an open cover of X. To show that ¢/ has a countable subcover, for each n € IN, we
choose an element, say U, from the subset

L{n::{UEU:VnQU},

*Unfortunate choice of terminology!
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if U, # @, to define amap @ : N — U U {D} by setting

(I)(n) — U}’lr lf Z/[Tl # ®/
@, if U,=0.

Clearly @ is a well-defined map. Clearly U, := ®(IN) is a countable subset of /. We show that
U, is a countable subcover of /. Let x € X be given. Since U is an open cover of X, we have
x € U, for some U € U. Since B is a basis for X, there exists n € IN such that x € V;; C U. Then
U, is non-empty, as it contains U, and so we have x € V;, C U, by construction of ®. Therefore,
U, := O(IN) is a required countable subcover of I/.

To show that X is separable, for each n € IN we choose one element, say x, € V; to get a
countable subset A := {x, : n € N} C X. To show that A is dense in X, let U be any non-
empty open subset of X. Then U being non-empty, choosing an element x € U we can find a
basic open subset, say V;, € B, such that x € V;, C U. Then x, € U,and hence ANU # @. O

Corollary 2.12.9. For any countable index set 1, the product space R! is Lindeldf.

Proof. Follows from Example 2.3.8, Lemma 2.12.2 and Proposition 2.12.8. O

Proposition 2.12.10. Any Lindelof metric space is second countable, and hence is separable.

Proof. Let (X,d) be a Lindel6f metric space. For each n € IN, the collection
Uy :={By(x,1/n) : x € X}

being an open cover of (X, d), admits a countable subcover, say B, C U, by Lindelof assump-
tionon (X,d). Then B:= |J By, being a countable union of countable sets, is a countable open

cover for (X,d). We showntGhI[;t B is a basis for (X,d). Let x € X and U an open neighbourhood
of x in (X, d). Then there exists ny € IN such that B;(x,1/n) C U, for all n > ng. Since By, is
an open cover of (X,d), there exists y € X such that B;(y,1/2n) € By, and x € By(y,1/2n).
Then by triangle inequality, we have

x € By(y,1/2n) C By(x,1/n) C U.

Therefore, B is a basis for the metric topology on (X, d). Therefore, X is second countable and
hence is separable by Proposition 2.12.8. O

Theorem 2.12.11. Let (X, d) be a metric space. Then the following are equivalent.

(1) X is second countable.
(it) X is Lindelof.
(iii) X is separable.

Proof. Note that (i) implies (ii) by Proposition 2.12.8, and (ii) implies (iii) by Proposition 2.12.10.
Suppose that (X, d) is separable. Let A be a countable dense subset of X. Then the collection of
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open balls
B:={Bj(a,1/n):a€ A,nc N}

is countable. We show that B3 is a basis for the topology on (X,d). Let x € X and U be an
open neighbourhood of x in (X, d). Then there exists ny € IN such that B;(x,1/n) C U, for all
n > ny. Since A is dense in X, for each n > ny we can find an element, say a, € AN By(x,1/n).
Then it follows from the triangle inequality that

x € By(ag,,1/n) C By(x,1/n) C U,

and hence the collection B is a basis for (X, d). This completes the proof. O

Proposition 2.12.12. R, is Lindeldf.

Proof. To show that the space R, is Lindelof, in view of Proposition 2.12.7 it suffices to show
that every basic open cover of Ry has a countable subcover. Let Y = {[aq,by) : &« € A} be
an open cover of Ry by basic open subsets. Let C = |J (aa,by) C R. We show that R\ C is

aEN
countable. Let x € R\ C be given. Since x ¢ |J (a4, by), S0 x = a,, for some a € A; fix such an
aEN
a € A. Fix a rational number r, € (an, by ). Since (a,,b,) C C, we have (x,7y¢) = (aq,7¢) C C.

If x,y € R\ C with x < y, then we have ry < ry (verify!). Therefore, the map f : R \C—Q
defined by
X — Iy,

is injective, and hence R \ C is countable.

For each x € R\ C, choosing a member U, € U we get a countable subcollection
Uy :={Uy,:xe R\C}CU

that covers R \ C. Since R is second countable (see Example 2.3.8), so is its subspace C :=

U (aa, b)) by Lemma 2.12.2. Then C is Lindel6f by Proposition 2.12.8, we can find a countable
xEA
subcollection

{(aq,,ba,) :n € N} C {(an,by) : 2 € A}

that covers C. Then the subcollection
Uy U{[ay,, ba,) :n e N} CU

is countable and covers Ry. Thus R, is Lindelof. O
Corollary 2.12.13. The space Ry is not metrizable (i.e., there is no metric on R, that induces the lower
limit topology on it).

Proof. Since Ry is Lindel6f by Proposition 2.12.12 and not second countable by Example 2.3.9,

the result follows from Proposition 2.12.8. O

Example 2.12.14. In Proposition 2.12.8 we have seen that second countable spaces are both

Lindelof and separable. However, the converse need not be true, in general. Let X := CJ0, 1]
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be the set of all continuous maps from [0,1] C R into R. Equip X with the subspace topology

[01]

induced from the product topology on R"Y*. Then X is Lindel6f and separable, but not second

countable. This will be explained in detail later.

Proposition 2.12.15. Countable product of separable spaces is separable.

Proof. Let {X, : n € N} be a countable collection of separable spaces, and let X := [] X,
nelN
be the associated product space. Let A, be a countable dense subset of X, for each n € IN.

Note that the Cartesian product A := J] A, C X need not be a countable subset of X. We
nelN
construct a countable subset of A that is dense in X. To do this, for each n € IN, we fix an

element a, € A,. Then for each m € IN, the subset

By = ( I An> x [T{an}

1<n<m n>m
is countable, and hence the subset B := |J By, is countable. Let U be any non-empty open
meN

subset of X. Then U contains a non-empty basic open subset of the form

vi=][wcuy,
nelN
where V,, is a non-empty open subset of X;, for all # € IN, and there exists 1y € IN such that
Vi = Xy, for all n > ng. Since A, is dense in X;, for all n € N, it follows that B,, NV #
@. Therefore, BNU # @, and hence B is a countable dense subset of X. Therefore, X is
separable. O

Example 2.12.16. Product of Lindelof spaces need not be Lindelof. We have shown in Example
2.12.12 that Ry is Lindel6f. We show that the product space R? := Ry x IR, (Sorgenfrey plane) is
not Lindelof. Note that ]R% has basis consisting of open subsets of the form [a,b) X [c,d), where
a < band c < din R. Consider the subspace

L:={(x,—x):x € R;} CRZ%

N

a x (—a) [a,b) X [—a,d)
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Clearly L is closed in R?. Then the open set R? \ L together with the basic open subsets of the

form

[a,b) X [—a,d)

where ¢ < band —a < d, forms an open cover % of R2. Since L is uncountable and each of
[a,b) x [—a,d) intersects L at (a, —a) only, it follows that &/ has no countable subcover. There-

fore, IR% is not Lindelof.

Example 2.12.17. Subspace of a Lindeldf space need not be Lindelof. To see this, let X be an
uncountable set, and let Y = X U {x}, where * is a point outside X. Define a subset U of Y to
be open if U is empty, or U = Y or U C X. Clearly this gives a topology on Y. Since Y is the
only open subset of Y containing *, we see that Y is compact, and hence is Lindelof. However,
X is not Lindelof in the subspace topology induced from Y.

Exercise 2.12.18. Show that a closed subspace of a Lindelof space is Lindelf.

2.13 Regular and normal spaces

Definition 2.13.1. A topological space X is said to be regular if X is a T1 space and given any
closed subset A of X and a point x € X \ A, there exists a pair of disjoint open subsets U and V
of X containing x and A, respectively.

Since every singleton subset of a T1 space are closed, it follows that a regular space is Haus-
dorff. However, the converse is not true in general.

Example 2.13.2. Let X = R, the real line equipped with the K-topology, where K = {1/n :
n € IN}. Clearly Ry is Hausdorff. Note that K is closed in Rg and 0 ¢ K. We show that K and
0 cannot be separated by a pair of disjoint open subsets of Rg containing them. Suppose on
the contrary that there exists a pair of disjoint open subsets U and V of Rk such that K C U
and 0 € V. Since VN K = @ by assumption, there is a basic open subset of the form (a,b) \ K
containing 0 in Rg. Since 0 < b, there exists n € IN such that 0 < 1/n < b. Since 1/n € K
and K C U, a basic open neighbourhood of 1/n contained in U must be of the form (c,d),
with ¢ < 1/n < d. Then choosing a point x € R with max{c, ;37} < x < 1, we see that

z € ((a,b) \ K) UNV, a contradiction. Therefore, R is not a regular space.

The next proposition gives an equivalent characterization of regular spaces.

Proposition 2.13.3. A topological space X is regular if and only if X is a T1 space such that given
any x € X and an open neighbourhood U of x there exists an open neighbourhood V of x such that
xeVcevcu

Proof. Let X be a regular space. Then X is a T1 space. Let x € X and U be an open neighbour-
hood of x in X. Then A := X\ U is a closed subset of X such that x € X\ A. Then by regularity
of X, there exists a pair of disjoint open subsets V and W of X containing x and A, respectively.
Then VN A =®,and hence V C X\ A = U.
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For the converse part, let X be a T1 space such that given any x € X and an open neigh-
bourhood U of x in X there exists an open neighbourhood V of x such that x € V C vV Cu.
Let A be a closed subset of X and let x € X\ A. Then U := X\ A is an open neighbourhood
of x in X. Then by assumption on X, there exists an open neighbourhood V of x in X such that
V C U. Then W := X \ V is an open subset of X containing X \U = Aand VNW = Q. O

Proposition 2.13.4. Subspace of a reqular space is regular.

Proof. Let A be a subspace of a regular space X. Since X is Hausdorff, so is its subspace A, and
hence A is a T1 space. Let Z C A be a closed subspace of A and leta € Z\ A. Let Z be the
closure of Zin X. Then Z = ZN A. Sincea € A\ Z, we have a ¢ Z. Since X is regular and Z is
a closed subspace of X not containing a, there exists a pair of disjoint open subsets U and V of
X containing a and Z, respectively. Then A N U and A NV are open neighbourhoods of 2 and

Z =ZN Ain A, respectively. Clearly (ANU) N (ANV) = @. Therefore, A is regular. O
Exercise 2.13.5. Let {X, : « € A} be a collection of topological spaces, and let X = [] X,
aEA
be the associated product space. Let Ay C X,, foralla € A, and let A = [] As. Then
aEA

[T Ax = T[] Aa, where A, is the closure of A, in X,, for each a € A.
aEAN aEN

Proposition 2.13.6. Product of reqular spaces is regular.

Proof. Let # = {X, : « € A} be a collection of regular spaces, and let X = [] X, be the
aEA
associated product space. Let x = (x4)4ea € X and let U be an open neighbourhood of x in

X. Then there is a basic open neighbourhood [] U, of x contained in U, where U, = X,, for
aEN
alla € A\ {ay,...,a,}. Since ll,xj is an open neighbourhood of Xa; in the regular space X,X],,

there exists an open neighbourhood V,X]. of Xa; such that VT% - Ua],, forallj € {1,...,n}. Set

Vo = Xo, fora € A\ {ay,...,a,}. Then V = [T V, is an open neighbourhood of x in X such
aEN

that V = T[] V, C U. Therefore, X is regular. O
aEN

Definition 2.13.7. A topological space X is said to be completely regular if X is a T1 space and
given a closed subset A and a point x € X\ A, there exists a continuous map f : X — [0,1]
such that f(x) = 0and f(A) = {1}.

Proposition 2.13.8. A completely regular space is regular.

Proof. Let X be a completely regular space. Let A be a closed subset of X and let x € X \ A.
Then there is a continuous map f : X — [0,1] such that f(x) = 0 and f(A) = {1}. Then
U:= f~1([0,1/2)) and V := f~1((1/2,1]) are pairwise disjoint open subsets of X containing
x and A, respectively. Therefore, X is regular. O

Definition 2.13.9. A topological space X is said to be normal if X is a T1 space and given any
two closed subsets A and B of X with AN B = @, there exist open subsets U and V of X such
that ACU,BCVandUNV =Q@.

Proposition 2.13.10. A normal space is regular.
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Proof. Let X be a normal space. Let A be a closed subset of X. Let x € X be such that x ¢ A.
Since X is a T1 space, {x} is a closed subset of X. Then there exist open neighbourhoods U and
V of {x} and A, respectively, in X such that U NV = @. Therefore, X is regular. O

Exercise 2.13.11. Show that a closed subspace of a normal space is normal.

Theorem 2.13.12. Every metrizable space is normal.

Proof. Let X be a metrizable space. Fix a metric d on X that induces the topology on X. Let A

and B be two non-empty closed subsets of X with AN B = @. For each a € A we can choose a

real number r, > 0 such that B;(a,7,) N B = @. Similarly, for each b € B we can choose a real

number s, > 0such that By(b,s,) NA = @. Then U := UA By(a,r;/2)and V := bUB Ba(b,s5/2)
€ €

are open subsets of X containing A and B, respectively. If there exists a point x € U NV, then
x € By(a,r,/2) N By(b,s,/2), forsomea € Aand b € B. Thend(a,b) < d(a,x)+d(b,x) <
ra/2 4 sp/2. I vy < sp, then (v, +5sp)/2 < sp, and hence d(a,b) < s;,. Then a € By(b, s,), which

is not possible since A N B = @. Similarly, if s, < r,, then d(a,b) < r,, and hence b € By(a,r,),
which is not possible. Therefore, we must have U NV = @. Therefore, X is normal. O

Lemma 2.13.13. Let K be a compact subset of a Hausdorff space X. Given any x € X \ K there exists
a pair of disjoint open subsets U and V of X containing x and K, respectively.

Proof. Since X is Hausdorff, for each y € K, there exists a pair of disjoint open subsets U, and
Vy of X containing x and y, respectively. Then % = {V, : y € K} is an open cover of K.

n
Since K is compact, there exists finitely many points y1, ...,y € Ksuch that K € U Vj,. Then

j=1
n n
U:= N Uy, and V := |J V,, are open neighbourhoods of x and K, respectively, such that
j=1 j=1
UNYV = @. This completes the proof. O

Corollary 2.13.14. A compact Hausdorff space is regular.

Proof. Let X be a compact Hausdorff space. Let K be a closed subset of X and let x € X \ K.
Since closed subspace of a compact space is compact, K is compact. Then by Lemma 2.13.13
there exists a pair of disjoint open subsets U and V of X containing x and K, respectively. Thus
X is regular. O

Theorem 2.13.15. A compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint closed subsets of X. Since
X is compact, both A and B are compact. Since X is compact and Hausdorff, it is regular by
Corollary 2.13.14. Then for each a € A there exists a pair of disjoint open subsets U, and V,

of X containing a and B, respectively. Then {U, : @ € A} is an open cover of A in X. Since
n

A is compact, there exists finitely many points ay,...,4, € A such that A C Ug],. Then
j=1

n n
U:= U U, and V := N Vg, are pairwise disjoint open subsets of X containing A and B,
=1 =1
respectively. Therefore, X is normal. O
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Theorem 2.13.16. Every second countable regular space is normal.

Proof. Let X be a second countable regular space. Let # be a countable basis for the topology
on X. Let A and B be two non-empty closed subsets of X with A N B = @. Since X is regular, for
eacha € A there exist a pair of disjoint open subsets U, and W, containing a and B, respectively.
Therefore,

U,NB=9, Yae A. (2.13.17)

Since # is a basis for the topology on X, for each 2 € A we can choose a basic open subset
V, € Bsuchthata € V, C U,. Since {V, : a € A} C £ and £ is countable, we have a

countable collection ¥ = {V}, : n € N} of open subsets of X such that A C V := (J V, and
nelN

V,NB=Q,foralln € N. Similarly, we get a countable collection #* = {W,, : n € N} of open

subsets of X suchthat BC W := |J Wyand W, N A = @, for all n € N. However, VN W
nelN
need not be empty. So we perform the following simple trick to modify them to get a pair of

disjoint open neighbourhoods of A and B in X. For each n € IN, let

n n
Vo=Vu\UW; and Wy =W, \ J V. (2.13.18)
j=1 j=1

n __
Since Vy, isopenin X and | W;is closed in X, the set difference V;, is open in X. Similarly, Wy, is
j=1
open in X. Since ANW; = @, V j, the collection {V}, : n € IN} is an open cover of A. Similarly,

the collection {W,, : n € IN} is an open cover of B. Finally, the open subsets V' := |J V,
nelN
and W' := | W, are disjoint. Indeed, if x € V' N W/, then x € V, N W;,, for some n,m € IN.
neN

n __
Without loss of generality, we many assume that m < n. Then x € Wj, = W, \ U V; implies that
j=1

x ¢ V,,, since m < n, and hence x ¢ V,,, which contradicts the assumption that x € V,, C V.
This completes the proof. O

Lemma 2.13.19. A topological space X is normal if and only if X is a T1 space such that given any
closed subset A of X and an open neighbourhood U of A in X, there exists an open neighbourhood V of
A whose closure V in X is contained in U.

Proof. Suppose that X is a normal space. Then X is a T1 space. Let A be a closed subspace of X
and let U be an open neighbourhood of A in X. Then B := X \ U is a closed subset of X with
AN B = @. Then there exist open neighbourhoods V and W of A and B, respectively, in X such
that ACV,BCWand VNW = @. Then VN B = @, and hence V C X \ B = U, as required.

Conversely, suppose that X is a T1 space such that given any closed subset A of X and
an open neighbourhood U of A in X, there exists an open neighbourhood V of A in X such
that V. C U. Let A and B be two disjoint closed subsets of X. Then U := X \ B is an open
neighbourhood of A in X. Then by assumption there exists an open neighbourhood V of A in X
such that V C X\ B. Then W := X\ V is an open neighbourhood of Bsuchthat VAW = @. [

Theorem 2.13.20 (Urysohn’s lemma). Given a pairwise disjoint closed subsets A and B of a normal
space X, there exists a continuous map f : X — [0,1] such that f(A) = {0} and f(B) = {1}.
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Proof. Since U := X\ B is an open neighbourhood of A in X and X is a normal space, by
Lemma 2.13.19 we can find an open neighbourhood U% of A such that

ACU, CU, CU. (2.13.21)

Nf—=
Nl—

Since Uy ,, and U are open neighbourhoods of the closed subsets A and U/, respectively,
applying normality we have open subsets U /4 and Us,4 of X such that

ACU, CU, CU, CU, CU; CU; C U (2.13.22)

NN
NN
NI
T,
W
[[e8)

Continuing in this way, for each rational number
m n
teT = {27 cQ|me{l,...,2 —1}andn€]N},
we have an open subset U; containing A such that given t;,t, € T, we have
t1<th = ACU, CU, CU, CU, CU=X\B. (2.13.23)

Defineamap f : X =+ R by

0, if xe N U,
_ teT
f() sup{t € T:x ¢ U}, if x¢ N Uy
teT

Clearly, f(x) € [0,1], V x € X, and that f(A) = {0} and f(B) = {1}. All it remains to show
that f is continuous. Since the collection of all intervals of the form [0,4) and (a,1], where

€ (0,1), forms a subbasis for the subspace topology on [0,1] induced from R, to show f is
continuous, it suffices to show that f~1([0,4)) and f~!((a,1]) are open in X, for all a € (0,1).
Fix an element a € (0,1). Note that, f(x) < a if and only if x € Uy, for some t < a. Indeed, since
T is dense in [0, 1], it follows from the definition of f that if f(x) < 4, choosing an element
to € T with f(x) < ty < a we have x € Uy,. Conversely, if x € U, for some ty < a, then
f(x) :=sup{t € T: x ¢ U} < tg. Therefore, f~1([0,a)) = {x € X : f(x) < a} = tU Uy is

<a

open in X. Now we show that f~1((a,1]) is open in X. For this, note that f(x) > a if and only
if x ¢ Uy, for some t > a. Indeed, if f(x) > a, then T being dense in [0, 1], choosing to,t; € T
witha < tg < t; < f(x) we see that x ¢ Uy,. Since U, C Uy, by construction, it follows
that x ¢ LTO Conversely, if x ¢ U;, for some t > a, then x ¢ U; where + > a, and hence
f(x) =sup{s € T:x ¢ Us} > a. Therefore, f1((a,1]) = {x € X : f(x) >a} = U (X\U) is

t>a
open in X. This completes the proof. O

Corollary 2.13.24 (Urysohn’s lemma). Let A and B be two disjoint closed subsets of a normal space
X. Then given a,b € R with a < b, there exists a continuous function f : X — [a,b] such that

f(A) = {a} and f(B) = {b}.
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Proof. By Urysohn’s lemma there exists a continuous map f : X — [0,1] such that f(A) = {0}
and f(B) = {1}. Let ¢ : [0,1] — [a, b] be the map defined by

o(t) = (1—ta+1tb, Vte01].

Then ¢ is a continuous map such that ¢(0) = a and ¢(1) = b. Then po f : X — [a,b]isa
continuous map such that (¢ o f)(A) = {a} and (¢ o f)(B) = {b}. O

Corollary 2.13.25. A normal space is completely regular.

Proof. Follows from Urysohn’s lemma. O

Definition 2.13.26. A subset A of a topological space X is said to be a G set in X if A can

be written as a countable intersection of open subsets of X, ie., A = () Uy, for a countable
nelN
family of open subsets {U,, : n € N} of X.

Exercise 2.13.27. Let A be a closed subset of a normal topological space X.

(i) Show that A is a Gy set in X if and only if there exists a continuous map f : X — [0,1]
such that f~1(0) = A.

(ii) If A is a G; setin X and B is a closed subset of X satisfying A N B = @, show that there
exists a continuous map g : X — [0,1] such that g~1(0) = A and g(B) = {1}.

Exercise 2.13.28 (Separation property of locally compact Hausdorff spaces). Let X be a locally
compact Hausdorff space. Let K be a compact subset of X. Show that for given any open
neighbourhood U of K in X, there exists an open neighbourhood V of K in X such that K C
Vveveu.

Exercise 2.13.29. Let X be a locally compact Hausdorff space. Show that a compact subset K of
X is a Gs set if and only if there exists a continuous map f : X — [0, 1] such that f~1(0) = K.

Exercise 2.13.30. Let (X,d) be a metric space. Given any two non-empty pairwise disjoint
closed subsets A and B of X, consider the map f : X — [0, 1] defined by

d(x,A)

fx) = d(x,A)+d(x,B)’ vxeX

Show that

(i) fisa continuous map,
(ii) f~1(0)=Aand f!(1) = B,and
(i) if inf{d(a,b) :a € A,b € B} > 0, then f is uniformly continuous.

Exercise 2.13.31. A topological space X is said to be perfectly normal if for given any pair of
disjoint closed subsets A and B of X there exists a continuous map f : X — [0,1] such that
f1(0)=Aand f~1(1) = B.

(i) Show that any metric space is perfectly normal.
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(if) Show that a normal space X is perfectly normal if and only if every closed subset of X is
a Gy set.

Proof. (i) Follows from Exercise 2.13.30 (i), (ii).

(ii) Let X be a normal topological space. Suppose that X is perfectly normal. Let Z be a
non-empty closed subset of X. If Z = X, there is nothing to show. Assume that Z # X. Leta €
X\ Z. Then Z and {a} are pairwise disjoint non-empty proper subsets of X. Since X is perfectly
normal by assumption, there exists a continuous map f : X — [0,1] such that f~1(0) = Z and
f~1(1) = {a}. Since {0} = N [0,1/n), applying f~! we see that Z = | f~1[0,1/n). Thus

nelN nelN
Z is a Gy set.

Conversely assume that every closed subset of X is a G5 set. Let A and B be two non-
empty pairwise disjoint closed subsets of X. By Exercise 2.13.27 there exist continuous maps
g:X —[0,1]and h : X — [0, 1] such that

* §71(0) = A,g(B) = {1}, and

e 171(0) = Band h(A) = {1}.
Then f := g+ (1 — h) is a continuous map from X into [0,1] such that f~1(0) = A and
f~1(1) = B. Therefore, X is perfectly normal. O

Exercise 2.13.32. Let X be a compact Hausdorff topological space, and let C(X) be the set of
all continuous maps from X into R. Define addition and multiplication operations on C(X) as
follow:

(f +8)(x) = f(x) +g(x), and (f-g)(x) := f(x)g(x), V f,g € C(X), x € X.

Note that, the above two binary operations on C(X) makes it a commutative ring with identity.
Recall that an ideal of C(X) is a non-empty subset I of C(X) such that given f,¢ € I and
h € C(X), we have fh+ ¢ € C(X). Anideal M of C(X) is called a maximal ideal if M # C(X)
and given any ideal I of C(X) with M C I, either M = [ or I = C(X). Given a point x € X, let
My :={f € C(X) : f(x) =0}.

(i) If M is a maximal ideal of C(X), show that M = My, for some x € X. [4]

(ii) If x,y € X with x # y, show that M # M, [3]

(iii) Let X be the set of all maximal ideals of C(X). Define a map

p: X=X

by u(x) = My, forall x € X. Given f € C(X), let Uy := {x € X : f(x) # 0} and let
Uf:={M € X: f ¢ M}. Show that u(Uy) = Uy.

Theorem 2.13.33 (Tietze’s extension theorem). Let X be a normal topological space and let Z be a
non-empty closed of X. Then any continuous map f : Z — R can be extended to a continuous map
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f: X — R such that ﬂz = f. Moreover, if f(A) C [a,b], for some a,b € R with a < b, then we can
find an extension f of f on X such that f(X) C [a,b).

Proof. The idea is to construct a sequence of continuous functions (g, ),en on X that uniformly
converges and the restriction of g, on Z converges to f on Z. Then the limit function of (g, ),eN
will be continuous and its restriction on Z will be f. For this we use the following.

Lemma 2.13.34. With the above notations, for given a continuous map f : Z — [—r,r], there exists a

continuous map g : X — [—%, %] such that

f2) -3 <5, Vzez
Proof. Note that
A= fY([=r,—r/3]) and B:= f'([r,r/3])

are pairwise disjoint closed subsets of Z. Since Z is closed in X, both A and B are closed in
X. Since X is normal, by Uryshon’s lemma there exists a continuous map g : X — [—r/3,7/3]
such that

8(A) = {~r/3} and g(B) = {r/3}.

Then we have the following three cases.
Case 1: If z € A, then f(z),g(z) € [-r, —r/3].

Case 2: Ifz € B, then f(z),g(z) € [r/3,7].

Case 3: Ifz € Z\ (AUB), then f(z),g(z) € (—r/3,r/3).
Therefore, in each case we have |f(z) — g(z)| < 2r/3. This completes the proof. O

Suppose that f : Z — [a, b] be a continuous map. Without loss of generality, we may replace
[a,b] by [—1,1]. Therefore, we begin with a continuous map f : Z — [—1,1]. Then by above
Lemma 2.13.34 with r = 1 we can find a continuous map g1 : X — R such that

lg1(x)| <1/3, Vx € X,
and |f(z) —g1(z)| <2/3,Vze Z

Applying Lemma 2.13.34 again to the continuous map f — g; with r = 2/3, we have a contin-
uous map §» : X — R such that
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Continuing in this way, by induction, for each n € IN we have continuous maps g1,...,gx :
X — R such that

i—1
|gi(x)|§:13(§> ,Vi=1,...,m; x €X,

n

md%@Z&@

i=1

Consider the map g : X — R defined by
g(x) = z n(x), Vx e X
n=1

. -1 . .
Since for each n € IN we have [g,(x)| < % (%)n , V x € X, and the geometric series

&S -1, . . . o .
7 X (§>n is convergent to 1, it follows that the series of functions converges Y. g,(x) is
n=1 n=1

absolutely and uniformly on X with |¢(x)| = | ¥ gu(x)| < 1, for all x € X. Therefore, g is
n=1

continuous on X with g(X) C [—1,1]. Since for each n € N, we have

2 n
§(3> ,VzeZ,
2

and since lim (2)" = 0, taking limit as 1 — oo we see that |f(z) — g(z)| = 0, for all z € Z.

Therefore, g’ 7= f.

For the second part, let f : Z — R be a continuous map. Since R is homeomorphic to the
open interval (—1,1), applying the first part we have a continuous map g : X — [—1,1] such
that g’z = f. Now we need to replace g with a continuous map h : X — (—1,1) such that
h‘z = f. For this, note that F := ¢~ 1(—1) U g (1) is a closed subset of X disjoint from Z.
Since X is normal, by Uryshon’s lemma we have a continuous map ¢ : X — [0,1] such that
¢(F) = {0} and ¢(Z) = {1}. Then the map & : X — R defined by

h(x) = ¢(x)g(x), Vx € X,

is continuous and that k|, = g|, = f. If x € F, then h(x) = ¢(x)g(x) = 0,and if x € X\ F,
then |g(x)| < 1and |¢(x)| < 1 together gives |h(x)| < 1. Therefore, the image of / lands inside
(—1,1), as required. This completes the proof. O

Exercise 2.13.35. Prove Uryshon’s lemma assuming Tietze extension theorem.

Exercise 2.13.36. Let X be a T1 topological space such that for given a non-empty closed subset
Z of X and a continuous map f : Z — [a,b] C R, there exists a continuous map f : X — [a,]
such that f|, = f. Then X is normal.

Proof. Let A and B be two pairwise disjoint non-empty closed subsets of X. Define a map

f:AUB — [a,b] by
a, if x€A,
flx) = { b, if xe€B.
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Since A and B are pairwise disjoint and closed, f is continuous by pasting Lemma 2.3.27. Then
by assumption on X, we have a continuous map f : X — [a,b] such that f| , = f. Fixing a
point ¢ € (a,b) we see that f~ ([a,c)) and f~* ((c,b]) are pairwise disjoint non-empty open
subsets of X containing A and B, respectively. Therefore, X is normal. O

Exercise 2.13.37. Let ] be any index set, and let R/ be equipped with the product topology.
Let A be a non-empty closed subset of a normal space X. Show that any continuous map
f: A — R/ can be extended to a continuous map f: X — R/ such that ﬂ a=1

Lemma 2.13.38. Let X be a metrizable topological space, and let Y be a subspace of X. Then for any
metric d on X inducing its topology, the induced metric dy on'Y given by

dy(y1,¥2) = dy1y2), VyL,y2 €Y,

induces the subspace topology on'Y induced from X. In particular, subspace of a metrizable topological
space is metrizable.

Proof. Let d be a metric on X that induced the given topology 7x on X. Let Y be a subspace of
X. Then the subspace topology on Y induced by 7x is givenby 7y = {UNY : U € tx}. Let
UNY € 1y, where U € 1x, be given. Lety € UNY. Since U is open in X, there exists r > 0
such that B;(y,7) C U. Then

By, (v,7):=={y1 € Y:dy(y,y1) <r} =By(y,r)NY CUNY.

Therefore, U NY is open with respect to the metric dy on Y induced by d. Conversely, suppose
that V' C Y be open with respect to the metric dy on Y. Then for each y € V, there exists r, > 0

such that By, (y,7y) € V. Let U := U B,(y,ry). Then U is open in X. Since B;(y,ry) NY =
yev

By, (y,7y), we see that UNY = V. Therefore, V € Ty. This completes the proof. 0O

Proposition 2.13.39. The space RN equipped with the product topology is metrizable.

Proof. See [Munkres]. O
Corollary 2.13.40. The product topological space [0, 1] is metrizable.

Theorem 2.13.41 (Urysohn’s Metrization Theorem). Every second countable reqular space is metriz-
able.

Proof. See [Munkres]. O

2.14 Complete Metric Spaces

Let (X, d) be a metric space.

Definition 2.14.1. A sequence in X is a map f : IN — X. We generally denote a sequence
f :IN — X by its image {xy }nen, Where x,, := f(n), Vn € N.
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Definition 2.14.2. A sequence {x,} in (X, d) is said to be a Cauchy sequence if given any real
number € > 0 there exists a natural number 1y € IN such that d(xy,, x,,) <€, ¥V m,n > ny.

Definition 2.14.3. A sequence (x,),ecN in a topological space X is said to be eventually constant
if there exists ng € IN such that x,, = x,,41, V1 > ng.

A sequence {x, } in (X, d) is said to be convergent if there exists xo € X such that given any
€ > 0 there exists a natural number 1 such that d(x,, x) < €, V¥ n > ny. In this case, we say
that x¢ is a limit point of the sequence {x,} and we denote this symbolically as xy = li_r>n Xn.

n—oo

Clearly an eventually constant sequence is convergent, but the converse need not be true.

Lemma 2.14.4. Any convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (xn)neN be a sequence in (X, d) converging to a point xg € X. Then for given any
€ > 0, there exists ng € IN such that

d(xy,x0) < €/2,¥Vn>ny.
Then we have
A(xp, xm) < d(xp, x0) +d(xm, x0) < €/2+€/2=¢, ¥Vm,n > ny.

Therefore, (x,),en is a Cauchy sequence in (X, d). O

Definition 2.14.5. A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d)
is convergent in (X, d).

Example 2.14.6. (i) The open interval (0,1) C R with the Euclidean metric induced from R
is not complete. Indeed, the sequence (xy),cN, Where x, = %, Vv n € N, is a Cauchy
sequence in (0,1), but it does not converges to a point of (0, 1).

(ii) The metric subspace Q of the Euclidean space R is not complete. Indeed, given any ir-

rational number &« € R\ Q, we can always find a Cauchy sequence of rational numbers
n
(xn)nen such that lijn x, = «. For example, taking x, = Y, % € Q, Vn € N, we see
n—oo k=0

that the sequence (x,) converges to e € R, which is not a rational number.

(iii) The real line R with the Euclidean metric on it is complete. This is a standard result from

basic real analysis course.

(iv) Any discrete metric space is complete. Indeed, if d is a discrete metric on a non-empty set
X, then any Cauchy sequence (x,),cN in (X, d) is eventually constant.

Lemma 2.14.7. Let (xy)eN be a Cauchy sequence in a metric space (X, d). Let (X, )renN be a subse-
quence of (xn)ueN- Then (x,)neN converges to a € X if and only if (xp, )keN converges to a.

Proof. Let (x;),en be a Cauchy sequence in (X, d). Let (xy, )ken be a subsequence of (x,),enN
that converges to a € X. Let e > 0 be given. Since (x,,),en is Cauchy, there exists n; € IN such
that

A(xp, xm) < €/2,¥Ym,n > nq.
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Since (xp, )keN converges to a, there exists 1o € IN such that
d(xp,,a) <e/2, Vk>n.

Let np := max{ny,n,} € IN. Since (1 )xe is a strictly increasing sequence of natural numbers,
choosing a k > np we see that

d(a,xn) < d(a,xn) +d(xn,x,) <€, Yn>ng.

Therefore, (x,),en converges to a in (X, d). Converse part is obvious. 0O

Corollary 2.14.8. A metric space (X,d) is complete if and only if every Cauchy sequence in X has a
convergent subsequence.

Proof. Follows from Lemma 2.14.7. O

Lemma 2.14.9. Every Cauchy sequence in a metric space (X, d) is bounded.

Proof. Let (x4)en be a Cauchy sequence in (X, d). Then there exists 19 € N such that
d(xy, xm) <1, Vm,n > ny.

Let d := max{d(x;,xj) : i,j < ng} and set M := max{d,1}. Then by triangle inequality, we
have d(xy, x) < M+1, Vm,n € N. This completes the proof. O

Example 2.14.10. R is complete with respect to the Euclidean metric on it.

Proof. Let (x4)nen be a Cauchy sequence in R. Then (x,),en is bounded by Lemma 2.14.9,
say |x,| < M, for some M > 0. Then (x,),en is a sequence in [-M, M] C R. Since [-M, M] is
compact by Lemma 2.11.23, the sequence (X, ),cN has a convergent subsequence, say (X, )keN,
by Theorem 2.11.46. Then (x;,)cn itself is convergent by Lemma 2.14.7. O

Lemma 2.14.11. Let {X, : « € A} be an indexed family of topological spaces, and let X := T] Xu
aEA
be the associated product topological space. A sequence (xn)neN in X converges to x € X if and only if

the sequence (7t (Xn))neN converges to mwy(x) in Xy, for all a € A.

Proof. Suppose that a sequence (x;),en in X := [] X, converges to x € X. Fixan g € A,
aeA
and let Uy, C X,, be an open neighbourhood of 774, (x) € Xy,. For a € A with & # ag, we set

Uy = Xu. Then U := ] U, is an open neighbourhood of x in X. Since (x,),en converges to
aEAN
x, there exists ny € IN such that x, € U, V n > ng. Then 7y, (x) € Uy, ¥ 1 > ng. Therefore,

(7tay (Xn) )neN converges to 7y, (X).

Conversely, suppose that the sequence (774 (x) ) e converges to 77, (x) in X,, forall a € A.
Let U be an open neighbourhood of x in X. Then there exists a basic open neighbourhood of x
of the form

v=]]Wwcuy,
aEA
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where V, is an open neighbourhood of 7, (x) in X,, for all « € A, and there is a finite subset,
say F := {ay,...,an} € Asuch that V, = X,, foralla € A\ F. Then for eachi € {1,...,m},
there exists ¢; € IN such that

Tta; (Xn) € Vi, V1 > 4.

Set £ = max{/1,...,¢y}. Then
TTa(x) € Vo, Vi > 4,

and hence x, € V C U, for all n > ¢. This completes the proof. O

Definition 2.14.12. A normed linear space (X, |-|) is said to be complete if (X, d|.|) is a complete
metric space, where d|.| is the metric on X induced by the norm |-|| on it. A complete normed
linear space is a called a Banach space.

Lemma 2.14.13. Let k be the field R or C equipped with the standard Euclidean norm on it. Let |-||;
and |-, be two norms on a k-vector space X. If ||-||; and ||, are equivalent, then (X, |-|;) is complete
ifand only if (X, |-||,) is complete.

Sketch of a proof: 1f dq and d, are the metrics on X induced by the norms |[|-|; and |||, respec-
tively, then
di(x,y) =[x -yl and da(x,y) =[x —yl,, Vx,y € X.

Since |-|; and |-||, are equivalent, there exist positive real numbers &, > 0 such that
afxly < fxlla < Bllx]y-

Then it follows that a sequence (x,),en in X is Cauchy (resp., convergent) with respect to dj if
and only if it is Cauchy (resp., convergent) with respect to d,. Hence the result follows. O

Exercise 2.14.14. Let d and p be two topologically equivalent metrics on a non-empty set X. If
(X,d) is complete, is (X, p) necessarily complete? Justify your answer. (Hint: Consider the set
X = {1/n : n € N}. Then X is discrete with respect to both the Euclidean metric d induced
from R and with respect to the standard discrete metric p, however (X, p) is complete while
(X, d) is not.)

Proposition 2.14.15. For each k € IN, the Euclidean metric space (R, ||-|,) is complete.

Sketch of a proof: Let (x,),eN be a Cauchy sequence in R¥. Foreachi € {1,...,k},let r; : R" —
R be the projection map onto the i-th factor. Since for eachi € {1,...,k} we have

|7i(x) = ()| < |2 =yl ¥ x,y €RE,

it follows that (77;(x,))nen is a Cauchy sequence in R, foralli € {1,...,k}. Since R is complete,
the sequence (71;(x,)) e converges to a point, say x; € R, foreachi € {1,...,k}. Lete > 0 be
given. Then for eachi € {1,...,k} there exists n; € N such that

|x; — ti(xn)| < €/k, ¥Vn>n;.
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Then it follows that

k
[x — xull, < 2 |x; — 7t (xn)| < k- % =€, Vn>ng:=max{ny,..., ng}.
i=1

This completes the proof. O

Corollary 2.14.16. R" is complete with respect to any norm-induced metric on it, for all n € IN.

Proof. Since R" is complete with respect to the standard Euclidean norm (i.e., the ¢,-norm) by
Proposition 2.14.15, and since any two norms on a finite dimensional vector space are equiva-
lent by Lemma 1.2.17, the result follows from Lemma 2.14.13. O

Corollary 2.14.17. Let (X, d) be a complete metric space, and let Z be a non-empty subset of X. Equip
Z with the metricdyz := d|ZXz. Then Z is closed in X if and only if (Z,dyz) is complete.

Proof. Let Z be a closed subset of a complete metric space (X,d). Let (z,),en be a Cauchy
sequence in Z. Since (X, d) is complete, the sequence (z,),en converges to a point, say a € X.
Then for given any r > 0 there exists ny € IN such that

zy € By(a,r), V1 > ny.

Then a € Z. Since Z is closed in X, we have a € Z. Therefore, Z is complete.

Conversely, suppose that (Z,dz) is complete. Let x € Z be given. Then by sequence Lemma
2.3.11 there exists a sequence (z,),eN in Z that converges to x in (X,d). Then (z,),eN is a
Cauchy sequence in (X, d), and hence in (Z,dy). Since (Z,dy) is complete, (z,),eN converges
to a point z € Z. Since (X, d) is Hausdorff, we must have z = x by Proposition 2.5.6. Therefore,
Z = Z. This completes the proof. O

Proposition 2.14.18. Let k be the field R or C equipped with the standard Euclidean metric on it. Let
loo(k) = {(xn) ckN: (x,) is bounded}

be the set of all bounded sequences in k. Note that {« (k) is a k-vector space admitting a norm |-||
defined by

ICxn)lleo := sup [xn], ¥V (xn) € Loo(k).
nelN

Then the space ls (k) is complete.
Proof. Given (x,), (¥n) € ¢oo(R), we define

doo((xn), (yn)) = sup{|xn —yu| : n € N}.

Let (fu)nen be a Cauchy sequence in £« (k). Let € > 0 be given. Then there exists . € IN such
that

doo(fu, fn) = :SIII\)I |fu(k) — fn(k)| <€ ¥Yn,m2>ne.
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Then for all i € IN, we have
|fu(i) — fi(i)| <€, Vn,m> ne.

Therefore, for each i € IN, the sequence ( f,(i)),en is Cauchy in k, and hence it converges to a
point, say f(i) € k, by completenss of k = R or C. This defines a map

f:IN—=k i— f(i).

We show that f € (k) and that (f,;),en converges to f in /e (k). Left as an exercise! 0O

Exercise 2.14.19. Let k be the field R or C equipped with the standard Euclidean metric on it.
Fix a real number p > 1, and let

ly(k) = {(xn) c kN Y [xal? s convergent} .
nelN
Show that £, (k) is a normed linear space over k with respect to the norm defined by
1/p
| el = < )3 Ixnl”> ¥ (xn) € Ep(K).
nelN
and the space £, (k) is complete.

Exercise 2.14.20. Let C[a, b] be the set of all continuous real valued functions defined on [a,b] C
R. Given f,g € C[a, b], show that

d(f,g) = sup |f(x) —g(x)|

x€la,b]
is a metric on C[a, b] that makes it a complete metric space.

Exercise 2.14.21. Let Z = {(x) € loo(k) : (x,) is convergent} is a closed subset of /s (k), and
hence is complete with respect to the sup norm induced from /« (k).

Lemma 2.14.22. Let (X,d) and (Y,d) be metric spaces. Let A be a non-empty subset of X, and let
f: A — Y be a uniformly continuous map. If (a,)en is a Cauchy sequence in A, then (f(an))neN is
a Cauchy sequence in (Y,d).

Proof. Let € > 0 be given. Then by uniform continuity of f, there exists a § > 0 such that
dy(f(an), f(am)) < €, whenever dx(ay,am) < 8.
Since (ay)yen is Cauchy, there exists n; € IN such that dx (a,, a,) < 6, V n > ng. Then
dy(f(an), f(am)) <€, Ym,n > ng.

Therefore, (f(ax))nen is a Cauchy sequence in (Y, d). 0O
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Exercise 2.14.23. Let (a,),eN and (by),en be two sequences in a metric space (X, d). Define a
sequence (¢, )yenN in X by setting

o ay,, if n=2m, forsomem € N, and
" by, if n=2m-—1, forsomem € IN.

(i) Show that both (a,),en and (by )N are subsequences of (cn)peN-

(ii) If (cn)nen is a Cauchy sequence, show that both (a,),en and (by),en are Cauchy se-
quences.

(iii) Conclude that (c,),eN converges to a point x € X if and only if both (a,),en and (by)nen
converges to x.

Lemma 2.14.24. Let A be a non-empty subset of a metric space (X,d), and let (Y,d) be a complete
metric space. Let (an)neN and (bn)nen be two sequences in A converging to the same point in X.
Then for any uniformly continuous map f : A — Y, both the sequences (f(ay))nen and (f(bn))neN
converges to the same point in (Y, d).

Proof. Suppose that both (a,),en and (by),en converge to xg € X. For each n € IN, define

o am, if n=2m, forsomem € N, and
" by, if n=2m-—1, forsomem € IN.

Since both (a,,),en and (by) e are subsequences of (¢ )yenN, the sequence (¢, )N converges
to xo by Exercise 2.14.23. Then (f(cx))nen is a Cauchy sequence in (Y, d) by Lemma 2.14.22,
and hence it converges to a point, say yo € Y, since (Y, d) is complete. Since both (f(a,))nenN

and (f(byn))nen are subsequences of (f(cx))nen, both (f(ax))nen and (f(byn))nen converges
to yo (c.f. Lemma 2.14.7). O

Theorem 2.14.25 (Uniform Extension Theorem). Let A be a non-empty subset of a metric space
(X,dx), and let A be the closure of A in X. Let (Y, dy) be a complete metric space. Then any uniformly
continuous map f : A — Y uniquely extends to a uniformly continuous map f : A — Y such that

ﬂA:f-

Proof. Uniqueness of f, if it exists, is clear because Y is Hausdorff (see Exercise 2.5.4). We now
show existence of f and prove its uniform continuity. Let f : A — Y be a uniformly continuous
map. Let xp € A\ A be given. Choose a sequence (a,),eN in A that converges to xg (c.f.
Lemma 2.3.11). Then (f(a))nen is a Cauchy sequence in (Y, dy) by Lemma 2.14.22, and hence
it converges to a point, say yo € Y, since (Y, dy) is complete. Then we define f(xo) = 1. Since
Yo does not depend on choice of a sequence (a,)necN in A converging to xo by Lemma 2.14.24,
the above construction

Xo — Yo,

gives a well-defined map f : A — Y such that ﬂ 4 = f- Note that f is continuous by Corollary
2.3.12. It remains to show that f is uniformly continuous.
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Let € > 0 be given. Since f : A — Y is uniformly continuous, there exists § > 0 such that
dy(f(a), f(b)) < €/3, whenever dx(a,b) < 4. (2.14.26)

Let x,y € A be such that
dx (x,) < 6/3. (2.14.27)

Choose sequences (x;),eN and (n)nen in A that converge to x and y, respectively. Since

the sequences (f(x,))nen and (f(yn))nen converge to f(x) and f(y), respectively, there exist
ng € IN such that

dy(f(xn), f(x)) <€/3, and dy(f(ya), f(y)) < €/3, Vn > ny. (2.14.28)
Since x, = x and y, — y as n — oo, there exists n1 > ng such that
dx(xp,x) < 0/3, and dx(yn,y) < 6/3, ¥Vn > ny. (2.14.29)
Then for all n > n4, by our choice of x and y as in (2.14.27), we have
dx (X, yn) < dx(xn, x) +dx(x,y) +dx(y,yn) < 6. (2.14.30)

Since dx (x,y) < ¢, it follows from inequalities (2.14.26) and (2.14.28) that

dy(f(x), f(y)) < dy(f(x), f(xn)) +dy (f(xn), f(yn)) +dy (f(yn), f(y))

Thus, fis uniformly continuous. This completes the proof. O

Remark 2.14.31. Note that Theorem 2.14.25 fails if f : A — Y is just continuous without being
uniformly continuous. For example, the map f : (0,1) — R defined by

f(x)=1/x, Vx e (0,1),

is continuous and IR is a complete metric space. However, f cannot be extended to a continuous
map f : [0,1] — R satisfying f| on =1

Proposition 2.14.32. Let (X,dx) and (Y,dy) be metric spaces. Amap f : X — Y satisfying

dy(f(x1), f(x2)) = dx(x1,x2), Vx1,x0 € X,

is an embedding of X into Y, called an isometric embedding of (X, dx) into (Y,dy).

Proof. If f(x1) = f(x2), for some x1,x; € X, then dx(x1,x2) = dy(f(x1), f(x2)) = 0 gives
x1 = x3. Therefore, f is injective. Clearly f is continuous. Fix a point xg € X and a real number
r > 0. Since

f (B(xo,7)) = Bay (f(x0),7) N f(X),
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we conclude that f is an embedding of X into Y. O

Lemma 2.14.33. Let f : (X,d) — (Y, p) be a continuous map of metric spaces. Let A be a dense subset
of (X,d). If
p(f(x), f(y)) = d(x,y), Vx,y € A,

then f is an isometric embedding.

Proof. Let x,y € X be given. Choose sequences (a,),en and (by,),enN in X that converge to x
and y, respectively, in (X, d). Since the composite map

oo (f,f): Xx X Hyxy 2R
is continuous, the sequence (o(f(an), f(bu))),cpn converges to p(f(a), f(b)). Since

p(f(an), f(bn)) = d(an,bn), Vn €N,

and the map d : X x X — R is continuous, the sequence (d(a,, by)),cp converges to d(a, b).
Since R is Hausdorff, by uniqueness of limit of a convergent sequence, we conclude that
p(f(a), f(b)) =d(a,b). Then the result follows from Proposition 2.14.32. O

Corollary 2.14.34. Let A be a dense subset of a metric space (X,d) and let (Y, p) be a complete metric
space. If f : (A,d) — (Y,p) is an isometric embedding, then f uniquely extends to an isometric
embedding of (X,d) into (Y, p).

Proof. Let f : (A,d) — (Y,p) be an isometric embedding. Then f is uniformly continuous.
Since A is dense in (X,d) and (Y, p) is complete, by uniform extension theorem 2.14.25 we
have a unique continuous map f : (X,d) — (Y, p) such that ﬂ 4 = f- Since

p(f(x), f(y) = p(f(x), f(y)) =d(x,y), Vx,y € A,

we see that fis an isometric embedding by Lemma 2.14.33. O

Lemma 2.14.35. Let (X, d) be a metric space. Let (Y1,d1) and (Yo, p2) be complete metric spaces, and
let f1:(X,d) — (Y1,d1)and fp : (X,d) — (Ya, p2) be two isometric embeddings such that f1(X) and
f2(X) are dense in (Y1,dy) and (Yo, dy), respectively. Then there is a unique isometric homeomorphism
¢ (Y1,d1) = (Yo,dy) such that o f1 = fo.

(X, d) f

oA

(Y1,dq)

(Y2,d5)

Proof. Consider the composite map & := f, ofl_1 t 1i(X) = fa(X) €Yy Letyg,z1 € f1(X) C
Y; be given. Since f; is an isometric embedding, there exist unique y,z € X such that f(y) =

y1, f1(z) = z1 and dq(y1,2z1) = d(y, z). Since f, is an isometric embedding, we have d(y, z)
da(f(y), f(z)) = da(h(y1),h(z1)). Therefore, h := f, off1 is an isometric embedding of f;(X)
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onto f,(X). Since (Y3, d) is complete and f;(X) is dense in (Y1, d1), the map h uniquely extends
to an isometric embedding ¢ : (Yi,d1) — (Y2,d2) such that ¢ o f; = f,. By symmetry, we
have a unique isometric embedding ¢ : (Yz,d2) — (Y3,d1) such that ¢ o f, = f;. Then by
uniqueness part, we must have ¢ o ¢ = Idy, and ¢ o ¢ = Idy,. Therefore, ¢ is an isometric
homeomorphism. O

Definition 2.14.36 (Pseudo-metric space). Let X be a non-empty set,and letd : X x X — R be
a map satisfying the following properties:

(i) d(x,y) >0, forall x,y € X,

(i) d(x,y) =d(y,x), forallx,y € X, and
(i) d(x,y) <d(x,z)+d(z,y), Vx,yz€X
Such a map d is called a pseudo-metric on X, and the pair (X, d) is called a pseudo-metric space.
Clearly any metric space is a pseudo-metric space.
Example 2.14.37 (Pseudo metric that is not a metric). Let X = RR?, the Cartesian product of R

with itself. Defined : X x X — R by

d((x1,x2), (y1,¥2)) = |x1 —y1l, YV (x1,x2), (y1,42) € X.

Then d is a pseudo metric on X, and (X, d) is a pseudo metric space. Since d((1,2),(1,3)) =0
but (1,2) # (1,3) in R?, d is not a metric on R?.

Exercise 2.14.38. Let C'[0,1] be the set of all real-valued piece-wise continuous functions on
[0,1] C R. Given f,g € C'[0,1], we define

1
a(f,9)= [ 1) = g0t
Show that d is a pseudo metric on C’[0, 1] but not a metric. Let
C[0,1] = {f € C'[0,1] : f is continuous on [0,1]}.

Show that the restriction of d gives a metric on C[0, 1].
Exercise 2.14.39. Let (X, d) be a pseudo-metric space. Give a point 2 € X and a real number
r>0,let By(a,r):={x € X:d(a,x) <r}.

(i) Show that the set B, := {By(a,r) : a € X,r € R"} forms a basis for a topology 1, on X,

called the pseudo-metric topology on (X, d).

(i) Show that (X, ;) is Hausdorff if and only if d is a metric.

Then next lemma tells us how to construct a metric space out of a pseudo-metric space.

Lemma 2.14.40. Let (X, d) be a pseudo-metric space. Define a relation p C X x X on X by setting

(x,y) €p if d(x,y) =0.
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Then p is an equivalence relation on X. Let X be the set of all p-equivalence classes of elements in X.
Then the map d : X x X — R defined by

d([x], [y]) = d(x,y), ¥ [x], [y] € X,

is a metric on X. The pair (X, d) is called the metric space associated to the pseudo-metric space (X, d).

Proof. Since d(x,x) = 0, V x € X, p is reflexive. Since d(x,y) = d(y,x), Vx,y € X, p is
symmetric. If d(x,y) = 0 and d(y,z) = 0, for some x,y,z € X, then by triangular inequality
we have 0 < d(x,z) < d(x,y) +d(y,z) = 0 and hence d(x,z) = 0. Therefore, p is transitive.
Thus, p is an equivalence relation on X. Let X = X/p be the set of all p-equivalence classes of
elements of X. We denote by

T:={yeX:d(yx)=0}eX

the p-equivalence class of x € X in X. Define

by
d(x,7) =d(x,y), V%7 € X.

Let x,x',y,y' € X be such that ¥ = x’ and = /. Then d(x,x’) = 0 and d(y,y’) = 0. Then

d(x,y) < x(x,x) +d(x',y)

IN

(x,

(*,y)

(x,x) +d(x,y)
(

x,Y)

IA
SV W

implies that d(x,y) = d(x',y). Similarly, d(x/,y) = d(x,y’) since d(y,y’) = 0. Therefore,
d(x,y) = d(x’,y'), and hence d is well-defined. Note that d(%,7) = d(x,y) = 0 if and only if
X = §in X. Clearly for all %, 7,% € X, we have

d(%,y) = d(x,y) = d(y,x) = d(y, %),

and

d(%,7) < d(%,%) +d(E 7).
Therefore, (}~(, dN) is a metric space. O

Remark 2.14.41. Note that, by choosing one element from each of the p-equivalence class in X
(by axiom of choice), we get a subset Y C X. It is clear that d’YxY 1Y XY — [0,00) is a metric
onY.

Lemma 2.14.42. Let (Y,d) be a metric space. Let A be a dense subset of (Y,d). If every Cauchy
sequence in A converges to some point in'Y, then (Y, d) is complete.
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Proof. Let (yu)nen be a Cauchy sequence in (Y, d). Since A is dense in Y, for each n € N,
there exists a, € By(yy,1/n) N A. Let € > 0 be given. Then there exists n € N such that
1/n < €/3, ¥ n > ne. Since (y,),en is Cauchy, there exists me € IN such that

AYn, Ym) < €/3, Y m,n > me.
Set M = max{ne, me}. Then for all m,n > M, we have

d(anram) < d(ﬂn/yn) + d(ynrym) + d(ymram)

1 € 1
< —4+ -+ —

n 3 m
< €.

Then (a,),eN is a Cauchy sequence in A, and hence it converges to a point, say y € Y, by
assumption. Then there exists K € IN such that

d(an,y) <e€/3,Vn>K.
Set My = max{M, K}. Then for all n > My, we have
d(Yn,y) < d(yn,an) +d(an,y)
1
n 3

A

€.

Therefore, (y,)nen converges to y € Y, and hence (Y, d) is complete. O

Theorem 2.14.43 (Completion of a metric space). Given a metric space (X, d), there exists a pair
((X,d), 1) consisting of a complete metric space (X,d) and an isometric embedding 1 : (X,d) — (X, d)
such that
(i) 1(X) is dense in (X,d), and
(ii) Universal property: given any complete metric space (Y,p) and a uniformly continuous map
f:(X,d) — (Y,p), there exists a unique uniformly continuous map f : (X,d) — (Y, p) such
that fo1 = f.

(X,d) —L—(v,p)

|

~

(X,d)

The pair (X,d) is uniquely determined, up to a unique isometry, by the above two properties (meaning
that, if (Y, p) is any complete metric space admitting an isometric embedding f : (X,d) — (Y, p) such
that the pair ((Y,p), f) satisfy the above two properties, then there exists a unique isometric homeo-
morphism @ : (X,d) — (Y,p) such that ® o1 = f). The pair (X,d) is called the completion of
(X,d).
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Proof. Uniqueness of the pair (()A(, d), 1), up to a unique isometric homeomorphism, is already

proved in Lemma 2.14.35. It remains to show its existence.

Let ¥ (X™N) be the set of all Cauchy sequences in (X,d). Given (xy), (yn) € €(XN), we
define

d((xn), (yn)) = ,}ijlgod(xn/yn)-

Note that, for all (x,), (vx) and (z,) in €(XN), we have

(@) d((xn), (yn)) =0,
(i) d((xn), (yn)) = d((yn), (xn)), and
(i) d((xn), (yn)) < d((xn), (zn)) +d((zn), (Yn))-

However, we may have two distinct Cauchy sequences (x,) and (y,,) in (X, d) withd((x,), (yn)) =
0. This motivates us to define a relation ~ on the set ¥ (X™V) by setting

(xXn) ~ (yn) if nlgr.}od(xn/]/n) =0.
Clearly this is an equivalence relation on ' (XN). Let
X:=¢(XN)/~

be the set of all ~-equivalence classes of Cauchy sequences in (X, d). Define

~

(6] [(y)]) = Jim, A y).

Note that d is a metric on X (see Lemma 2.14.40).

Isometric embedding: Note that the natural map

o~

L (X,d) — (X, d)
that sends a point x € X to the constant sequence (x,x,---) € X, is an isometric embedding.
Indeed, ¢ is an injective map, and given x,y € X, we have d((x),:(y)) = d(x,y) (see Proposi-
tion 2.14.32).

Image of X under 1 is dense in (X, d): Letz € X be given by a Cauchy sequence (x,),eN in (X, d).
Since the isometric embedding map ¢ is uniformly continuous, the image sequence (¢(xy))neN
in ((X) C X is Cauchy, which clearly converge to the point z = [(x,)] in (X, d) (verify!).

Completeness of (X,d): Since for any Cauchy sequence (a,),en in (X, d), its image (¢(xn))neN
converges to the point [(x,),en] € X (verify!), completeness of (X,d) follows from Lemma

2.14.42.

Universal property of (X,d): Let (Y,p) be a complete metric space and f : (X,d) — (Y,p) a
uniformly continuous map. Since ¢ : (X,d) — (X,d) is an isometric embedding with dense
image, by Uniform Extension Theorem (Theorem 2.14.25) the map f o /=1 : /(X) — Y uniquely
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extends to a uniformly continuous map

~ ~

fi(Xd) = (Y.p)

such that f| = f o1 Therefore, f o1 = f. This completes the proof. O

1(X)

Exercise 2.14.44. Show that the completion of the (Q, | - |) is the real line (R, | - |).

Recall that, given a metric space (X, d), the map d: X x X = R defined by
d(x,y) :=min{1,d(x,y)}, Vx,y € X,

is a metric on X, called the standard bounded metric on X.

Lemma 2.14.45. Let (X, d) be a metric space, and let d be the standard bounded metric on X associated
tod. A sequence (xn)nenN in X is Cauchy with respect to d if and only if it is Cauchy with respect to d.
Consequently, (X, d) is complete if and only if (X, d) is complete.

Proof. Let (x,)neN be a sequence in X. Then taking 0 < € < 1, we see that d(x,, x,) < € if and
only if d(x,, xm) < €. Therefore, (x,) is Cauchy in (X,d) if and only if it is Cauchy in (X, d).
Hence the result follows. O

Let I be an index set, and consider the Cartesian product set X I Given f.geX I let

pa(f,g) == sup {H( fla),g() o € 1}. (2.14.46)

Then p, is a metric on X', called the uniform metric on X! induced from (X, d).

Theorem 2.14.47. If (X, d) is a complete metric space, then (X!, p4) is complete.

Proof. Let (fu)nen be a Cauchy sequence in (X!,p4). Let e > 0 be given. Without loss of
generality, we may assume that € < 1. Then there exists 1. € IN such that

0d(fu, fm) < €/2, ¥V m,n> ne.

Since for given any « € I, we have (see (2.14.46))

A(fu(@), fn(@)) < pa(fu, fn) < €/2, ¥ 1,m > ne, (2.14.48)

it follows that ( f,(a)),eN is a Cauchy sequence in (X, d), and hence in (X, d) by Lemma 2.14.45,
for all w € I. Since (X, d) is complete, it converges to some point, say f(«) € X, foralla € I.
Then & — f(a) defines an element f € X!. Fixn > n. and & € I. Then letting m — oo in
(2.14.48) we see that

d(fu(w), f(w)) < e/2 <e. (2.14.49)

Since this inequality holds for all « € I and n > n,, we conclude that

0a(fu, f) = supd(fu(a), f(a)) < €/2 <€, ¥ 1> ne.

wel
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Therefore, the sequence (f; )N converges to f in (X!, o). This completes the proof. 0O

Let X be a topological space and let (Y, d) be a metric space. A map f : X — Y is said to be
bounded if there exists a constant M > 0 such that

d(f(x), f(y)) <M, VxyeX

A sequence (fy)nen in YX is said to converge uniformly to an element f € YX with respect to
the uniform metric p; on Y induced from (Y, d) if for given any € > 0 there exists ne € N
such that

d(fa(x), f(x)) <€, Vn>ne, x €X.

Theorem 2.14.50. Let X be a topological space and let (Y, d) be a metric space. Let C(X,Y) be the set
of all continuous maps from X into (Y,d), and let B(X,Y') be the set of all bounded functions from X
into (Y, d). Equip Y with the uniform metric p, induced from (Y,d). Then

(i) both C(X,Y) and B(X,y) are closed subsets of (YX, p4), and

(ii) if (Y,d) is complete, then C(X,Y) and B(X,Y) are complete.
Proof. We first show that if a sequence (f;)nen in YX converges to an element f € YX in the

uniform metric p,, then it converges uniformly with respect to the metric d on Y. Let € > 0 be
given. Then there exists 1. € IN such that

pd(fu, f) <€ Yn>ne.

Then by definition of uniform metric p;, we see that for any x € X, we have

A(fu(x), f(x)) < palfu f) <€ V1 > ne.
Therefore, (f,) converges uniformly to f with respect to the metric d on Y.

To show that C(X,Y) is closed in (YX,p,4), let f € C(X,Y) be given. Choose a sequence
(fu)nen in C(X,Y) that converges to f with respect to the uniform metric p;. Then by the
above argument, the sequence ( f,,) converges uniformly to f in (Y, d), and then f is continuous
by uniform limit theorem 2.3.22. Therefore, f € C(X,Y).

To show that B(X,Y) is closed in (Y%, p4), let f € B(X,Y) be arbitrary. Choose a sequence
(fn) in B(X,Y) that converges to f with respect to the uniform metric p;. Then fore = 1/2, we
can find 1y € IN such that

pa(fu, f) <1/2, ¥ n > ny.

Since fy is bounded, diam(f,,(X)) < M, for some real number M > 0. Then by triangle
inequality, we have diam(f(X)) < M + 1. Therefore, f € B(X,Y).

Now part (ii) follows from part (i) applying Theorem 2.14.47 and Lemma 2.14.17. O
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We end this section by giving a necessary and sufficient criterion for a metric space to be
compact. This generalize the well-known Heine-Borel theorem for compactness in Euclidean

space.

Definition 2.14.51. A metric space (X, d) is said to be totally bounded if for given a real number

n
€ > 0, there exists finitely many points x1,...,x, € X such that X = (J By(x;,€).
i=1

Theorem 2.14.52. A metric space (X, d) is compact if and only if it is complete and totally bounded.

Proof. Let (X, d) be a compact metric space. Then it is complete by Theorem 2.11.46 and Lemma
2.14.7. For given € > 0, the collection {B;(x, €) : x € X} being an open cover of (X, d), by com-

n
pactness of (X, d), we can find finitely many points x1,...,x, € X such that X = |J By(x;,€).
i=1
Therefore, (X, d) is totally bounded.

Conversely, assume that (X, d) is complete and totally bounded. We show that (X,d) is
sequentially compact, and hence is compact by Theorem 2.11.46. Let (x,),en be a sequence
in (X, d). Since (X, d) is complete, it suffices to show that (x,),en has a Cauchy subsequence.
Without loss of generality, we may assume that (x,),cN is not eventually constant (c.f. Defi-
nition 2.14.3). Since (X, d) is totally bounded, we can cover X by finitely many open balls of
radius 1; at least one of which, say Bj, contains x,, for infinitely many values of n € IN. Let
Ji = {n € N: x, € B}. Assume that n > 2, and we have constructed nested sequence of
infinite subsets

22w

of N and open balls B; of radius 1/i, fori = 1,...,n —1, such that x; € B;, Vk € J;i =
1,...,n — 1. Then covering X by finitely many open balls of radius 1/#n, we can find an open
ball, say By, of radius 1/n that contains xj for infinitely many values of k € J,,_1, and then set
Jn :={k € Jy—1 : xx € By}, and proceed inductively.

Choose n1 € J;. Assume that k > 2, and we have chosen n; € J;, foralli =1,...,k—1,
in such a way that n; < -+ < np_1. Then we choose 1 € J; such that n,_1 < ny. We can do
this because all J; are infinite. Then by induction we can find a sequence of natural numbers
(ng)ken such that ny < np,q, vk € N.

Let € > 0 be given. Then there exists n € IN such that 1/n. < €. Then for all i,j > n,, we

have n;, nj € Jne, and hence x,, Xn; € By, . Therefore, we have
d(xni,xnj) <1/ne <eVi,j>ne,

and hence the subsequence (x;, )xcn is Cauchy. This completes the proof. O

2.15 Ascoli-Arzela theorem

Proposition 2.15.1. Let X be a compact topological space and (Y, |-|) a normed linear space. Let
C(X,Y) be the set of all continuous maps from X into Y. Then the map |||, : C(X,Y) — R defined
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by sending f € C(X,Y) to
|flleo := sup [ f(x)]
xeX

is a norm on C(X,Y), called the sup norm on C(X,Y).

Proof. Since X is compact and the composite map X i> Y M> R is continuous, for all f €

C(X,Y), it follows that | f], is a finite real number, for all f € C(X,Y). Let f € C(X,Y) be

given. Clearly | f|, > 0and |f|, = 0if and only if ||f(x)|| = 0, V x € X, which happens if

and only i £ = 0. Cleaely |f| = sup [8(x)] = o]l and 1 + glly < [fl. + Il foral
xe

f,g€C(X,Y). |

Example 2.15.2. Taking (Y, |-||) to be the field K = R or C equipped with the standard Eu-
clidean norm on it, we get the standard sup norm on the set C(X,K) of all continuous maps
from X into KK, and the metric induced by this sup norm is called the sup metric on C(X, K); it
is given by sending f € C(X,K) to

|flleo = sup [f(x)],
xeX

which is a finite real number because any continuous map f € C(X,K) is bounded by com-
pactness of X.

Lemma 2.15.3. Let X be a compact topological space. Let (Y, ||-|) be a complete normed linear space
(Banach space). Let C(X,Y') be the set of all continuous maps from X into Y. Then C(X,Y) is complete
with respect to the sup norm.

Proof. Let (fn)nen be a Cauchy sequence in C(X,Y). Since
1 () = fn () < 1 fn = fnlloos VX € X, n,m €N,

it follows that (f,(x)),en is a Cauchy sequence in the complete metric space (Y, |-||), and hence
it converges to some point, say f(x) € Y, for each x € X. This definesamap f : X — Y given
by x — f(x), V x € X. We claim that f is continuous. Let € > 0 be given. Since (f) is Cauchy,
there exists ne € IN such that

[ fo = fnlloo < €/2, ¥ 1,m > ne.
In particular, for each x € X we have
I fu(x) = fun(x)| < €/2, ¥ n,m> ne.
Since (fx(x)) converges to f(x) as n — oo, we conclude that
[fa(x) = f(x)| < e/2< e Vn>ne x€X.

Therefore, (fy)nen uniformly converges to f on X. Then f is continuous by the Uniform Limit
Theorem 2.3.22. O
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Corollary 2.15.4. Let X be a compact topological space. Let K be R or C equipped with the standard
Euclidean norm on it. Let C(X,K) be the set of all continuous maps from X into K. Then C(X,K) is

complete with respect to the sup norm.

Definition 2.15.5 (Equicontinuity). Let X be a topological space and (Y, d) a metric space. Let
C(X,Y) be the set of all continuous maps from X into (Y, d). A subset F C C(X,Y) is said to be
equicontinuous at xo € X if for given a real number € > 0, there exists an open neighbourhood
U C X of x( such that

d(f(x),f(y) <e VfeF xyel

If F is equicontinuous at every point of X, then F called equicontinuous.

Theorem 2.15.6 (Ascoli-Arzela). Let X be a compact topological space and let (Y, |-||) be a complete
normed linear space (Banach space). Let C(X,Y') be the set of all continuous maps from X into Y. Equip
C(X,Y) with the sup metric (c.f. Proposition 2.15.1). Then a subset S C C(X,Y) is compact if and
only if it is closed, bounded and equicontinuous.

Proof. Let S be a compact subset of C(X,Y). Then S is closed and bounded by Theorem 2.14.52.
So it remains to show that S is equicontinuous. For given any f € C(X,Y) and a real number
r > 0, we denote by Bw (f, ) the open ball

Beoo(f,7) :={8 € C(X,Y) 1 |f =8l <7}

in the metric space C(X,Y). Let € > 0 be given. Since S is compact, we can find finitely many
n
points fi,..., fn € Ssuchthat S C U Bwo(fi,€/3). Let x € X be given. Since f; is continuous

1=
at x, there exists an open neighbourhood V, ; C X such that
[fi(x) = fiy)| <e/3, Yy € Va.

n
Then V, := (] V,, is an open neighbourhood of x such that
i=1

i=

Ifi(x) — fiy)| < e/3, Yy e Ve, Vi=1,...,n.

Lety € Vyand f € Sbe given. Then f € Boo(fj, €), for somei € {1,...,n}. Then we have

If () = FOI < f ) = i)+ 11fi(w) = fiCo) | + [ fi(x) — f(x)]
<S4t4i=c
3 3 3
Therefore, S is equicontinuous at x. Since x € X is chosen arbitrarily, we conclude that S is

equicontinuous.

Conversely, suppose that S is a closed, bounded and equicontinuous subset of C(X,Y). Let
(fn)nen be a sequence in S. To show that S is compact, it suffices to show that (f,) has a
convergent subsequence. For this, we first produce a Cauchy subsequence of ( f,;), which must
converge to some point, say 1 € C(X,K), since C(X, K) is complete by Lemma 2.15.3, and then
we would have h € S, since S is closed in C(X, K) by assumption.
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Since S is bounded, there exists M > 0 such that || f(x)| < M, V f € S. Since S is equicon-
tinuous, for each k € IN and xp € X there exists an open neighbourhood Vy,  of x such that

If(x) = fWI <1/k, ¥V f €S, %,y € Vi

Since X is compact, we can choose a finite subset, say F; € X such that X = (J V. and
X EFk

If(x) = f) <1/k Vy € Vi, f €S.

Let F = |J Fy. Clearly F is at most countable. Write F as F = {xq,x2,x3,...}. Since | fu(x1)[| <

k=1
M, ¥ n € N, there exists a subsequence, say (g,(ql))nE]N of (fu)nen such that (g,(f)(xl))ne]N

(1)

converges to a point of Y. Similarly, there exists a subsequence, say ( g,(f))nE]N of (gn ' )neN
such that ( g,(}) (x2))neN converges to a point of Y. Continuing in this way inductively we can

choose a subsequence ( g,(f))neN of (fu)nen such that

(1) (g,gﬂ))neN is a subsequence of (g,(li))ne]N, foralli € N, and

(i) lim gif) (x;) exists uniquely in Y, for all i € IN.
n—00

Consider the diagonal subsequence h,, := g,(f), n € N. Clearly (h,) is a subsequence of (fy)

and that nlgn hy(x;) exists in Y, for all i € IN. We show that (1), is a Cauchy sequence in
C(X,Y).

To see this, fix k € IN. Then there exists ny € IN such that
hn(y) — hm(y)| < 1/k, ¥V'n,m > no,y € F.

Then for given x € X, we can choose y € F; such that x € V;.. Then for all n,m > ng we have

[ (%) = o (%) oo < 1 (%) = a () |+ [ (y) = P () |+ [ (y) = P ()

_1,1,1 3
k k kK

Then for all n,m > n., we have
| = Bl = sup [[hn(x) = b (x) | < 3/k.
xeX

Therefore, (hy,) is a Cauchy sequence in C(X,Y'). This completes the proof. O

Corollary 2.15.7. Let X be a compact metric space and let C(X,R) be the set of all continuous maps
from X into R, where R is equipped with the standard Euclidean metric. Equip C(X,R) with the sup
norm. Then a subset S C C(X,R) is compact if and only if it is closed, bounded and equicontinuous.

Exercise 2.15.8. Let (X,d) and (Y,p) be metric spaces with (X,d) compact. Let A be an
equicontinuous subset of C(X,Y). Show that A is uniformly equicontinuous in the sense that

for given a real number € > 0, there exists a real number § > 0 such that for given any x,y € X
with d(x,y) < §, we have p(f(x), f(y)) <€, V f € A.
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Proof. Let € > 0 be given. By equicontinuity of A, for each x € X there exists a real number
Oy > 0 such that

p(f(x), f(y)) <€ Vy € By(x,0x), and f € A.

n

By compactness of X, we can find finitely many points x1, ..., x, € Xsuchthat X = (J By(x;,6x,/2).
i=1

Setd = L min{dy,,...,6x,} > 0. Letx,y € X with d(x,y) < 6. Now x € By(x;,dy,/2), for some

i€ {1,...,n}. Then we have

p(f(x), f(x;) <e V feA
Since
Oy, Or. Oy
d(y,x;) <d(y,x)+d(x,x;) <5+ 7' < 7' + 71 =0,
we see that

p(f(y), f(xi)) <e VfeEA

Combining above inequalities, we see that if d(x, y) < ¢, then we have

p(f(x), f(y) < p(f(x), f(xi) +p(f (xi), f(¥))
<§+§:&VfEA
Therefore, A is uniformly equicontinuous. O

Exercise 2.15.9. Let X be a connected topological space and let .A be an equicontinuous subset
of C(X,R). If A(xg) := {f(x0) : f € A} is a bounded subset of R, for some xy € X, show that
A(x) := {f(x) : f € A} isbounded, for all x € X.

Proof. LetY := {x € X : A(x) isabounded subset of R}. Since xy € Y, we see that Y # @.
Since X is connected, to show Y = X, it suffices to show that Y is both open and closed in X.

To show that Y is closed in X, let y € Y be given. By equicontinuity of A we can find an
open neighbourhood V), C X of y such that

f(x)=fWI <L, VxeV, feA

Sincey € Y, we have V, N Y # @. Fix a point z € V;, NY. Since .A(z) is bounded, there exists a
real number M, > 0 such that
F(2)] < M., ¥ f € A

Then
W< 1fW) = f@I+1f)| <1+M, VfeA

and hence y € Y. Therefore, Y is closed in X.

To show that Y'is openin X, let y € Y be arbitrary. Then there exists M;, > 0 such that

fl <My, ¥V feA
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By equicontinuity of A, we can find an open neighbourhood V;, C X of y such that

f) =Wl <L ¥xeVy, feA

In particular, for any x € V;, we have

FEI<1f() = fFWI+1fW)] <1+ My, ¥V f e A

Therefore, A(x) is bounded, for all x € V, and hence y is an interior point of Y. Therefore, Y is
open in X. This completes the proof. O

Exercise 2.15.10. Let X be a topological space, not necessarily compact, and (Y, d) a metric
space. Let (fu)nen be a sequence of equicontinuous maps in C(X, Y) that point-wise converges
toamap f : X — Y. Show that f is continuous.

Proof. Let xg € X and € > 0 be given. Since (f)qenN is equicontinuous, there exists an open
neighbourhood, say Vy, of xp in X such that

d(fu(x), fu(xo)) <e€/3, Vx € Vy, n € N.

Lety € Vy, be arbitrary. Then there exists 7, € IN such that

d(fu,(y), f(y)) < €/3 and d(fu,(x0), f(x0)) < /3.

Combining this with the above inequality, we have

Therefore, f is continuous at x(. Since xg € X is taken arbitrarily, f is continuous. O

Exercise 2.15.11. Let X be a compact topological space and (Y, d) a metric space. Let (fu)nen
be an equicontinuous sequence in C(X, Y) that point-wise converges to f € C(X,Y) on a dense
subset A of X. Show that (f,) converges uniformly to f on X.

Proof. Let e > 0 be given. By equicontinuity of (f,) and continuity of f, for given x € X, there
exists an open neighbourhood, say Vy of x in X such that

(1) d(fu(y), fa(x)) <e€/5 Vy e Vy, VneN,and
(i) d(f(y), f(x)) <e/5 Vy € V.
By compactness of X, we can find finitely many points, say xq,...,x, € X, such that X =

n
U Vi,. Lety € X be given. Theny € V,, for some i € {1,...,n}. Since A is dense in X, we
i=1

can choose a point, say a; € AN Vy,. Since (f,) converges to f point-wise on A, the sequence
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(fn(a;)) converges to f(a;), and so we can find m; € N such that
Afulan), flas)) < €15, ¥ > m;

Then using (i) we have

d(f(ai), f(y)) < d(f(ai), f(xi)) +d(f(xi), f(y)) <2e/5.

Combining the above inequalities, we see that

d(fu(), f(y)) < d(faly), fu(xi)) +d(fu(xi), fu(ai)) +d(fulai), fai)) +d(f(ai), f(y))

_e, € 2 ¢
5 5 5 5
=€
holds for all y € Vi, and for all n > m;. Set m = max{my, ..., m,}. Then we have
d(fu(y), f(y)) <e, Vye X and n > m.
Therefore, (f,;) converges uniformly to f on X. O

Exercise 2.15.12. Let (X, d) be a metric space. Let (fu),ecN be a sequence of continuous func-
tions in C(X, R) that converges uniformly to a map f : X — R on every compact subset of X.
Show that f is continuous.

Proof. Let xop € X be given. Let (x,),en be a sequence in X that converges to xg in (X, d).
Then the subset K := {x, : n € IN} U {x¢} is compact in (X,d). Since (f,) converges to f
uniformly on K by assumption, we see that f|, is continuous. Then (f(x;))sen converges to
f(x0). Therefore, f is continuous at x. Since xy € X is chosen arbitrarily, we conclude that f is
continuous. O

Exercise 2.15.13. Let X be a compact topological space. If (f,),eN is a uniformly bounded
equicontinuous sequence in C(X,R), show that (f,),en has a convergent subsequence in
C(X,R).

Proof. Since (fy) is uniformly bounded on X, there exists M > 0 such that
|fa(x)] <M, Vx € Xandn € N.

Let Y = {fy : n € N} C C(X,R) and let Y be the closure of Y in C(X,R). Let ¢ € Y be given.
Then for € = 1 > 0, there exists n € IN such that | f, — g|,, < €. Since

I8l < 1fn =&l + I full <1+ M,

we conclude that Y is uniformly bounded. Let € > 0 be given. Since (f;) is equicontinuous, for
given x € X there exists an open neighbourhood V of x such that

|fu(x) — fu(y)| <e€/3, Vy € Vy, n€N.
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Let ¢ € Y be arbitrary. Then there exists n € N such that ||f, — ¢, < €/2. Then forally € Vi
we have

18(x) =gW)| < [8(x) = fu ()| + [ fu(x) = fu(W)] + | fu () — g(¥)]
€ € €
< 3 + 3 + 3¢
Therefore, Y is equicontinuous. Then by Ascoli’s theorem (Theorem ??) we conclude that Y
is compact. Since C(X,R) is a metric space, we conclude that Y is sequentially compact, and
hence the sequence (f,;) has a convergent subsequence in Y C C(X, R). O

2.16 Baire Category Theorem

Let X be a topological space. Recall that a subset A of X is said to be dense in X if A = X.
This is equivalent to say that A intersects any non-empty open subset of X non-trivially.

Exercise 2.16.1. Let Y C X. Show that Int(Y) = @ if and only if X \ Y is dense in X.

It follows from Exercise 2.16.1 that A C X is dense in X if and only if Int(X \ A) = @.

Definition 2.16.2. A subset A of X is said to be nowhere dense in X if Int(A) = @.

Definition 2.16.3. A topological space X is said to be a Baire space if for given any countable

family {Z, : n € IN} of nowhere dense closed subsets of X, the subset |J Z, is nowhere
nelN

dense.

Proposition 2.16.4. A topological space X is a Baire space if and only if for given any countable family

{U, : n € N} of non-empty open dense subsets of X, their intersection (| U, is dense in X.
nelN

Proof. Suppose that X is a Baire space. Let {U, : n € IN} be a countable family of non-empty
open dense subsets of X. Since for given any non-empty open subset V of X, we have VN U, #
@, it follows that A, := X \ U, is a nowhere dense closed subset of X, for all n € IN. Since

X is a Baire space, we have Int( |J A,) = @. Then it follows from the Exercise 2.16.1 that
nelN

Nn u,=Xx\ ( U An> is dense in X.
nelN nelN

For the converse part, let {A, : n € IN} be a countable family of nowhere dense closed
subsets of X. Then by Exercise 2.16.1 U, := X \ A, is an open dense subset of X, for all n € IN.

Since () U, is densein X by assumption, using Exercise 2.16.1 we conclude that Int ( U An>
nelN nelN
is nowhere dense in X. O

Definition 2.16.5. A subset A of X is said to be of first category if A can be expressed as a union
of a countable collection of nowhere dense closed subsets of X. If A is said to be of second
category if it is not of the first category.

Exercise 2.16.6. Show that a topological space X is a Baire space if and only if every non-empty
open subset of X is of the second category.
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The terminology “category” in Definition 2.16.5 is an example of an abuse of terminology,

and hence we would refrain from using it.

Theorem 2.16.7 (Baire Category Theorem). Let X be a compact Hausdorff space or a complete metric
space. Then X is a Baire space.

Proof. Let X be a compact Hausdorff space or a complete metric space. Let {A, : n € N} bea

countable collection of nowhere dense closed subsets of X. We need to show that

nelN

Let Uy be any non-empty open subset of X. It suffices to show that Uy N (X \ U An> # .
nelN
Since A; is nowhere dense closed subset of X, we can choose a point, say y; € UN (X \ A7).

Since X is regular in both the cases, we can find an open neighbourhood, say U; € X of y; such
that
UjNA =@ and U; C Up. (2.16.8)

If X is a metric space, we may choose U; small enough such that diam(U;) < 1. In general,
given the non-empty open subset U,,_1 of X, we may choose a point, say y, € U,_1 such that
Yn & Ay and then we can choose U, to be an open neighbourhood of y, such that

LTn N A'rl = ®r
LTn g u}"l*l/
diam(U,) < 1/n, in case X is a complete metric space.
If there exists a point x € ) U,, then we would have x € U; C Uy. Since A, NU, = O,

nelN
it would then follow that x ¢ A,, Vn € IN, and hence x € Uy N (X \ U Ay), as required.
nelN

Therefore, it suffices to show that (| U, # @.
nelN

Case 1: Suppose that X is a compact Hausdorff space. Then the nested sequence of non-empty
closed subsets
Ul ) UZ D) E oo

of X has finite intersection property, and then | U, # @ by compactness of X.
nelN

Case 2: Suppose that X is a complete metric space. Since diam(U,) < 1/n, ¥ n € N, choosing

a point x, € U, \ U4, for each n € N, we get a Cauchy sequence in X, which must converge

to a point, say xp € X by completeness of X. Then it follows that xp € () U, (verify!). This
nelN

completes the proof. O

Lemma 2.16.9. Any open subspace of a Baire space is a Baire space.

Proof. LetY be an open subspace of a Baire space X. Let { A, : n € IN} be a countable collection
of nowhere dense closed subsets of Y. Let A, be the closure of A,, in X; note that A, NY = A,
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for all n € IN. We claim that Int(A,) = @, for all n € N. If U is a non-empty open subset of X
satisfying U C A,,, then

V=UNYCA,NY=A,, VneN,

contrary to the assumption that A, has empty interior in Y. Therefore, A, is nowhere dense in

X, foralln € N.If |J A, contains a non-empty open subset, say V of Y, then Y being open in
n€N
Y, that V is open in X and that

Ve A
nelN

contrary to our assumption that X is a Baire space. Therefore, |J A; is nowhere dense in Y,
nelN
and hence Y is a Baire space. O

Theorem 2.16.10. Let X be a topological space and (Y,d) a metric space. Let (f, : X — Y)penN be a
sequence of continuous maps that point-wise converges toamap f : X — Y, i.e., for each x € X, the
sequence (fn(x))yen converges to f(x) in (Y,d). If X is a Baire space, then the subset

DC(f) :={x € X : f is continuous at x}

is dense in X.

Proof. For given a natural number k € IN and a real number € > 0, we define
Ax(e) :={x e X :d(fu(x), fm(x)) <e, Vm,n>k}.
It follows from continuity of the maps (fy, fm) : X = Y x Yand d : Y x Y — R that the subset

Axe) = ) (furfu) ™ (471([0,€]))

n,m>k

is closed in X. For each € > 0, we claim that |J Aj(e) = X. To see this, let xg € X be given.
keIN
Since fu(x9) = f(xp) as n — oo, the sequence (f,(x0))nen is Cauchy, and hence we can find

k € IN such that d(f,(x0), fm(x0)) < €, ¥V m,n > k. Therefore, xy € Ai(€) as required.

Let U := |J Int(Ag(€)). We show that
keN

(i) Ue is open and dense in X, and

(ii) the function f is continuous at each point of the set DC(f) = u;.
keN

=

Then the result follows from the fact that X is a Baire space.

To show that U, is dense in X, it suffices to show that for any non-empty open subset V of
X, there exists k € IN such that V N Int(Ag(e)) # @. For this purpose, we note that the subset
V N Ag(e) is closed in V, for all k € IN. Since V is a Baire space by Lemma 2.16.9, we must have
Int(V N Ag(e)) # @, for some k € IN. [[INCOMPLETE... See [Munkres, p. 298]]]. O
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Exercise 2.16.11. Let X be a non-empty Baire space. If X = |J By, show that Int(B,,) # @, for
nelN
some 1 € IN.

Answer: Suppose on the contrary that Int(B,) = @, for all n € N. Then X being a Baire space,

Int ( U Bn> =Q.
nelN

Since X = |J By by assumption, we have X = |J Bj. Then we have Int( |J By,) = X, which
nelN nelN nelN
contradicts our assumption that X # @. O

we must have

Exercise 2.16.12. Express R as a countable union of subsets {Fn n e ]N} with Int(F,) = @, for
all n € IN.

Exercise 2.16.13. Show that a locally compact Hausdorff space is a Baire space.

Answer: Let X be a locally compact Hausdorff space. Let X be the one-point compactification
of X. Then X is a compact Hausdorff space, and hence is a Baire space by Theorem 2.16.7. Since
X is an open subspace of X, it follows from Lemma 2.16.9 that X is a Baire space. O

Exercise 2.16.14. Let X be a topological space such that every point x € X has a neighbourhood,

say Vi, that is a Baire space. Show that X is a Baire space.

Answer: Let {U, : n € IN} be a countable collection of open and dense subsets of X. Let W be
any non-empty open subset of X. Fix a point x € W. Since {U, NV, : n € IN} is a countable
collection of open and dense subsets of Vy, wehave V, N | N U, | isdensein V,. Since WN Vi

nelN
is a non-empty open subset of Vy, we have

wn vxm<ﬂ un> =[WnWn vxm<ﬂ un> # O,
nelN nelN
and hence W N ( N Un) # @. Therefore, | U, is dense in X. O
nelN nelN

Definition 2.16.15. A subset Y of X is said to be a G4-set in X if Y can be written as a countable
intersection of open subsets of X; i.e., if

Y= U,
nelN

where U, is an open subset of X, for all n € IN.

A subset Z of X is said to be an F,-set in X if Z can be written as a countable union of closed

Z=\J Fu,

nelN

subsets of X; i.e., if

where F, is a closed subset of X, for all n € IN.

Note that a subset Y C X is Gg-set in X if and only if X \ Y is an Fy-set in X.
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Example 2.16.16. Note that Q° := R\ Q is a Gs-set in R. Indeed, we can express it as

R\Q = [ (R\ {x}),

x€Q
where each of R\ {x} are open in R, for all x € Q.

Exercise 2.16.17. Let (X, d) be a metric space. Show that any closed subset of (X, d) is a G, set
in X. Is it true for an arbitrary topological space? Justify your answer.

Answer: If Ais a closed subset of (X,d), then A= N {x € X:d(x,A) <1/n}. O
nelN

Exercise 2.16.18. Show that Q is not a Gs-set in IR.

Answer: If possible suppose that Q is a Gs-set in R. Then R \ Q is an F,-set in R, and hence we
can write it as a countable union of closed subsets, say

R\Q= [J E..
nelN
Then R = QU (R \ Q) is a countable union of closed subsets, say B, of R, such that either
B, CQor B, CR\Q, foralln € N. Then Int(B,) # @, for some n € IN, by Exercise 2.16.11.
But this is not possible since both Int(Q) and Int(R \ Q) are empty sets. O

Exercise 2.16.19. Let X be a Baire space. Show that any dense G; subset of X is a Baire space.

Answer: Let Y be a dense G; setin X. Write Y = (| Uy, where U, is an open subset of X, for
nelN
all n € N. Let {V}, : m € IN} be a countable collection of open dense subsets of Y. Then for

each m € N, we have V};, = Y N Wy, for some open subset W, of X. We first show that W, is
dense in X, for all m € IN. For this, let U be any non-empty open subset of X. Since Y is dense
in X, we have UNY # @. Since U NY is a non-empty open subset of Y and V}; is open and
densein Y, wehave V; NUNY # @, for all m € IN. Since

VN (UNY) =W, N(UNY)CW,NU

we see that Wy, N U # @. Therefore, Wy, is dense in X, for all m € IN.

Since {U, : n € N} U{W,, : m € N} is a countable collection of open dense subsets of X
and X is a Baire space, we have (] U, N Wy, is dense in X. But this intersection is precisely

n,melN
equals to
(N UuNWy=YnN ( N wm> = Va
n,meN meN meN
Therefore, (| V,,, mustbe densein. O

meN

Exercise 2.16.20. Show that R \ Q is a Baire space with respect to the subspace topology in-
duced from RR.
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Answer: Since R\ Q is a G4 subset of R by Example 2.16.16, and since R is a Baire space by
Theorem 2.16.7, the result follows from Exercise 2.16.19. O

Exercise 2.16.21. Show that R is a Baire space, where K = {1/n : n € N}.

Exercise 2.16.22. Let 7y and 1, be two topologies (of open subsets) on a non-empty set X satis-
fying the following property: for given any non-empty U € T, there exists a non-empty V € 7;
such that V C U, foralli,j € {1,2} withi # j.
(i) Show thata subset A C X is dense in (X, 1) if and only if it is dense in (X, 12).
(i) Show that (X, 17) is a Baire space if and only if (X, 1») is a Baire space.
(iii) Conclude that any finite product of R, with itself are Baire spaces.

Exercise 2.16.23. Show that R/ is a Baire space with respect to the box topology, product topol-

ogy and the uniform metric topology (see Exercise 1.2.20) on it.

Remark 2.16.24. In general, product of two Baire spaces need not be a Baire space. An example
can be found in the article: Paul E. Cohen, Product of Baire Spaces, Proceedings of the American
Mathematical Society, Vol. 55, No. 1, 1976.

Exercise 2.16.25 (Uniform boundedness principle). Let X be a Baire space and let ¥ C C(X,R)
be such that the subset

Fo={fla) :f € F}

is bounded, for all 2 € X. Show that there is a non-empty open subset U of X on which F is
uniformly bounded in the sense that there exists a real number M > 0 such that

|f(a)] <M, VfeF, and a € U.

Proof. For eachn € N, let

By:={xeX:|f(x)|<n VfeF}= ﬂ fﬁl([—n,n]).

feF

Clearly By, is closed in X, for all n € IN. Therefore, B, = B, for all n € IN. Since for each a € X,
the subset 7, C R is bounded, there exists a real number M, > 0 such that

[f(a)] <My, V f €F.

Therefore, choosing n, € IN with M, < n,, we see that a € B,,. Therefore, X = |J By.
nelN

Then by Exercise 2.16.11 we conclude that Int(B,) = Int(B,) # @, for some n € IN. Taking
U := Int(B,) we see that |f(a)| <n,forall f € Fanda € U. O

Definition 2.16.26. Let X be a topological space and (Y, d) a metric space. The oscillation of a
map f : X = Y atx € X is defined to be the real number

wg(x) = inf {diam(f(U)) : U is an open neighbourhood of x in X} .


https://www.ams.org/journals/proc/1976-055-01/S0002-9939-1976-0401480-4/S0002-9939-1976-0401480-4.pdf
https://www.ams.org/journals/proc/1976-055-01/S0002-9939-1976-0401480-4/S0002-9939-1976-0401480-4.pdf
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If X is a metric space and (Y, d) is the real line equipped with the standard Euclidean metric,
then we have
wg(x) = lim diam(f(B(x,9))).

6—0

Remark 2.16.27. Note that oscillation of a function f need not be finite; for example, consider
the map f : [0,1] — R defined by

1o (1 :
ssin(<), if 0<x<1,
fo = { ¥ (3)
0, if x=0.
Then w¢(0) = oo.
Exercise 2.16.28. Compute the oscillation of the function f : [0,1] — R defined by

x’

Lojif 0<x<1,
X) = -
f() {0, if x=0.

Lemma 2.16.29. Let X be a topological space and (Y, d) a metric space. Amap f : X — Y is continuous
at xo € X if and only if ws(xo) = 0.

Proof. Suppose that f is continuous at xg € X. Then for given any € > 0, there exists an open
neighbourhood, say Vy,(€) C X of xg such that

f(Vxy(€)) € B(f(x0),€/3).

Then diam (f(Vy,(€))) < 2¢/3 < e. Since € > 0 is arbitrary, we conclude that wf(xq) = 0.

Conversely, suppose that ws(xg) = 0. Let € > 0 be given. Then there exists an open
neighbourhood U C X of x( such that diam(f(Ue)) < €/2. Since f(x9) € f(Ue), we can
conclude that f(Ue) C B;(f(xp),€). Therefore, f is continuous at x. O

Proposition 2.16.30. Let X be a topological space and (Y, d) a metric space. Let f : X — Y. Then for

any real number € > 0, the subset
wjjl([O,e)) ={x € X:wys(x) <e}
is open in X.

Proof. Letx € wj?l ([0,€)) be given. Then by Definition 2.16.26 there exists an open neighbour-
hood, say V C X of x such that diam(f(V)) < e. Then for any y € V, we have

we(y) < diam(f(V)) <e.

Thus, x € V C w}?l ([0,€)), and hence w;l ([0,€)) is open in X. O

Exercise 2.16.31. Let Rt = R U {c0, —c0}, where co and —oo are two distinct elements outside
R. Extend the usual partial order relation < on R by setting

—co<a<oo, VaelR.
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(i) Show that the collection
Bt = {(a,b):a <b}U{[~c0,a),(a,]:a c R}

forms a basis for a topology (order topology), say t', on RY.
(ii) Show that the inclusion map ¢ : R — R' is an embedding.
(iii) Show that the extended real line (R*, t¥) is Hausdorff.
Exercise 2.16.32. Let X be a topological space and (Y, d) a metric space. Forany map f : X — Y,
verify if the map ws : X — R defined by

wg(x) := inf{diam(f(V)) : V is an open neighbourhood of x}, ¥V x € X,

is continuous.

Proposition 2.16.33. Let X be a topological space and (Y,d) a metric space. Then the set of all points
of continuity ofamap f : X = Y, ie,

C(f) :={x € X : f is continuous at x},

is a G subset of X.

Proof. Since

C(f)zwf1<ﬂ 01/n> ﬂw ([0,1/n))

nelN nelN

by Lemma 2.16.29, and the subsets w}?l ([0,1/n)) are open in X, for all n € IN, by Proposition
2.16.30, the result follows. O

2.17 Stone-Weierstrass theorem

In this section we discuss some conditions under which a linear subspace of C(X, R), with

X a compact topological space, is dense with respect to the sup metric on C(X, R).

Definition 2.17.1. A collection L of real valued functions on a non-empty set X is said to sep-
arates points of X if for given any two distinct points x,y € X, there exists f € L such that

f(x) # fy)-

Lemma 2.17.2. Let X be a non-empty set, and let L be the vector space of real valued maps on X that
separates points of X. If the constant function 1 € L, then for given any two distinct points x,y € X
and any real numbers « and B, there exists f € L such that f(x) = a and f(y) = B.

Proof. Since L separates points of X, for given x,y € X with x # y, there exists g € L such that
g(x) # g(y). Then v := g(x) — g(y) # 0in R, and hence the map f : X — R defined by

f(2) =~ [(a = p)g(z) + (Bg(x) —ag(y)) - 1], Vz € X,

==
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is continuous. Clearly f(x) = a and f(y) = B, as required. 0O

Definition 2.17.3. A R-linear subspace L of C(X,R) is said to be a function space if for given
any f,g € L, we have max{f, g}, min{f, g} € L, where

max{f, g}(x) i= max{f(x), g(x)}, ¥ x € X,
and min{f, g}(x) := min{f(x),g(x)}, Vx € X.

Example 2.17.4. Here are some examples of function spaces.

(i) The vector space R of all real valued functions on a non-empty set X.
(ii) The vector space B(X,R) of all bounded real valued functions on a non-empty set X.

(iii) Then vector space C(X,R) of al real valued continuous functions on a topological space
X.

(iv) The vector space Cy(X, R) of all bounded continuous real valued functions on a topolog-

ical space X.

The next result is a local approximation property that enable us to approximate a function
at a given point.
Lemma 2.17.5. Let X be a compact topological space and let L C C(X, R) be a function space contain-

ing the constant function 1 and that separates points of X. Then for given ¢ € C(X,R), a point a € X
and a real number € > 0, there exists f € L such that f(a) = g(a) and g(x) —e < f(x), forall x € X.

Proof. For each x € X, by Lemma 2.17.2 we can find f, € L such that

fx(a) = g(a) and fi(x) = g(x).

Since fyx and g are continuous, there exists an open neighbourhood V, C X of x such that
8(y) = frly) <€ Vy € Vr.

n
Since X is compact, we can find finitely many points, say xy,...,x, € X such that X = {J V,,.
i=1

Let
fri=max{f1,..., fu}

Since f1,..., fn € L and L is a function space, we have f € L. Clearly f(a) = g(a). Letx € X
be given. Then x € Vi, forsomei € {1,...,n}. Then f(x) > fi(x) > g(x) — €. This completes
the proof. O

Proposition 2.17.6 (Stone-Weierstrass: Lattice Version). Let X be a compact topological space. Let
L be a function space of continuous real-valued functions on X separating points of X and containing
the constant function 1. Then L is dense in C(X,R) with respect to the sup metric.

Proof. Let ¢ € C(X) and € > 0 be given. For each x € X, use Lemma 2.17.5 to choose a
continuous function fy € L such that fy > ¢ — € and fx(x) = g(x). Since fr(x) = g(x) <
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g(x) + € and both fy and g are continuous at x, there exists an open neighbourhood V, of x
such that

fely) <g(y) +e/2,Vy € Ve
By compactness of X we can choose finitely many points, say x1,...,x; € X such that X =

n
U Vy,. Since Lis a function space, we have
i=1

fi=min{fx,..., fx,} € L.

We claim that ||f — g[|, < €. Since fy, > ¢ —€/2, it follows that f > ¢ —€/2. Letx € X be
given. Since x € V,, forsomei € {1,...,n}, wehave f(x) < fy,(x) < g(x) + €/2. Therefore,

combining above inequalities, we have
g(x)—e/2< f(x)<g(x)+e€/2, VxeX.
Therefore, ||f — g, = sup |f(x) — g(x)| < €/2 < e. This completes the proof. O
xeX

Proposition 2.17.7. There is a sequence of polynomials that converges uniformly to \/x on [0,1] C R.

Proof. Set Pi(x) =0, ¥ x € [0,1], and inductively define

Pyir(x) i= Palx) + % [x— (PP, vne N

Clearly (P ), is a sequence of polynomials. We claim that
0< Py(x) <vx, Vxe0,1]andn € N.

For n = 1, this is trivial. Assume thatn > 1and 0 < P,(x) < /x, for all x € N. Clearly
0 < P,y1(x), Vx €10,1]. Since

and the last two factors are non-negative by induction hypothesis, it follows that P, ;1 (x) <
Vvx, for all x € [0,1]. It follows from the definition of P, that the sequence of polynomi-
als (Py),cp is increasing and bounded on [0, 1], and hence it converges point-wise to a non-
negative function f on [0,1]. It follows that (f(x))*> = x, for all x € [0,1], and hence f(x) =
Vx, ¥V x € [0,1]. Since /x is continuous on [0,1] and the sequence of polynomials (Py) is
increasing on [0, 1], it follows that (P,) converges uniformly to y/x on [0, 1]. O

Theorem 2.17.8 (Stone-Weierstrass Theorem). Let X be a compact topological space, and let A be an
R-algebra of continuous real-valued functions on X separating points of X and containing the constant
function 1. Then A is dense in C(X,R) with respect to the sup metric.
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Proof. Let A be the closure of A in C(X,R). Note that A is an R-algebra. Indeed, for given
f,g € A, choosing sequences (f,) and (g,) in A converging to f and g, respectively, we see
that the sequence (af, + Bgn) in A converges to af + g in C(X,R), for all o, € R, and
the sequence (f,g) in A converges to fg in C(X,R). Since A is closed in C(X, R), it follows
that af + Bg, fg € A. Hence it follows that A is a closed R-subalgebra of C(X,R) containing
A. Since A separates points of X, so does A. Also the constant function 1 € A. In view of
Proposition 2.17.6, it suffices to show that A is a function space.

Since for any f,g € C(X,R), we have

max{f,g} = 5 (f +g+1f ~gl) and min{f,g} =2 (F+g—If g,

to show A a function space, it suffices to show that |f| € A, for all f € A. Let f € A with
f #0. Thena := | f|, > 0. By Proposition 2.17.7, we can find a sequence of polynomials (P;)
converging uniformly to /x on [0, 1]. Since A is an R-algebra, the sequence of functions

gn =D, (fz/a2) cA

converges uniformly to v/(f2/a2) = |f|/a on X. Since A is closed in C(X, R), we conclude that
|f|/a € A. Since A is an R-algebra, we conclude that |f| = a - (|f|/a) € A. This completes the
proof. O

Corollary 2.17.9 (Weierstrass Approximation Theorem). Let f : [a,b] — R be a continuous map.
Then for given an € > 0, there exists a polynomial p € R[x] such that

[f(x) —p(x)| <€ Vxe€]ab].

In other words, ||f — pllo, < €, where ||, denotes the sup norm.

Exercise 2.17.10. Let f : (0,1) — R be a continuous function. Show that there exists a sequence
of polynomials (P,),eN that uniformly converges to f on (0,1) if and only if there exists a
continuous function f : [0,1] — R such that ﬂ o1 = /f

Exercise 2.17.11. Let f : [0,1] — R be a continuous function such that
1
/ ¥ f(x)dx = 0, ¥ n € NU{0}.
0

Show that f(x) =0, Vx € [0,1].

Exercise 2.17.12. Given real numbers a,b with a < b, let C[a, b] be the R-algebra of real valued
continuous functions on [a, b]. Show that the R-algebra generated by the set {1, x?} is dense in
CI0, 1], but it fails to be dense in C[—1, 1].

n .
Exercise 2.17.13. We say that a polynomial P(x) = Y a;x' € R]x] is even (resp., odd) if a; = 0,
i=0
for all odd i (resp., even i). Show that a continuous function f : [0,1] — R vanishes at 0 if and

only if there exists a sequence of odd polynomials (P,) that converges uniformly to f on [0, 1].
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Exercise 2.17.14. Assume that either f : [0,00) — R is a polynomial or a continuous bounded
function. Show that f = 0 if and only if

/Ow F(x)e ™ dx =0, ¥ n € N U{0}.

Exercise 2.17.15. Let (X,d) be a compact metric space, and let C(X,R) be the set of all real
valued continuous functions on X. Equip C(X,R) with the sup metric. Show that the metric
space C(X, R) has a countable dense subset.
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Algebraic Topology
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Homotopy theory: Review of quotient topology, path homotopy, definition of fundamental
group, covering spaces, path and homotopy lifting, fundamental group of S!, deformation
retraction, Brouwer’s fixed point theorem, Borsuk-Ulam theorem, Van-Kampen’s theorem,
fundamental group of surfaces, universal covering space, correspondence between covering

spaces and subgroups of fundamental group.

Homology Theory: Simplicial complexes and maps, homology groups, computation for sur-
faces.
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3.1 Review of quotient spaces

3.1.1 Examples
3.1.2 CW Complex

3.1.3 Grassmanians

3.2 Homotopy of maps

Let I be the closed interval [0,1] C R. Let X and Y be topological spaces.

Definition 3.2.1. Let fy, f1 : X — Y be continuous maps. We say that fy is homotopic to f1,

written as fp ~ f1, if there is a continuous map
F:XxI—Y

such that F(x,0) = fo(x),Vx € X, and F(x,1) = fi(x), V x € X. In this case, the continuous
map F is called the homotopy from fy to f1. A continuous map f : X — Y is said to be null
homotopic if f is homotopic to a constant map from X into Y.

FIGURE 3.1: Homotopy

Example 3.2.2. 1. Let X be a space. Then any two continuous maps f,g¢ : X — R? are
homotopic. To see this, note that the map F : X x I — IR? defined by

F(x,t) = (1—1t)f(x) +tg(x), V(x,t) € X X1,

is continuous and satisfies F(x,0) = f(x) and F(x,1) = g(x), for all x € X. Thus F is
a homotopy from f to g; such a homotopy is called a straight-line homotopy, because for
each x € X, it movies f(x) to g(x) along the straight-line segment joining them.

Before proceeding further, let us recall the following useful result from basic topology
course, that we need frequently in this course.

Lemma 3.2.3 (Joining continuous maps). Let A and B be two closed subsets of topological space X
such that X = AU B. Let Y be any topological space. Let f : A — Y and g : B — Y be continuous
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fo

h

>t
0 1

FIGURE 3.2: Example of a straight-line homotopy

maps such that f(x) = g(x), forall x € AN B. Then the function h : X — Y defined by

_ ) fx), if xeA,
h(x)_{ glx), if x€B,

is continuous.
Proof. Let Z C Y be a closed subset. It is enough to check that h~!(Z) is closed in X. Note that

hiz)=n"'z)nA)|J (' (Z)nB)
=1 2Us (2.
Since f and g are continuous, f~!(Z) is closed in A and ¢~!(Z) is closed in B. Since A and B

are closed in X, both f~1(Z) and g~1(Z) are closed in X, and so is their union #~1(Z). This
completes the proof. O

Lemma 3.2.4. The relation “being homotopic maps” is an equivalence relation on the set C(X,Y') of all

continuous maps from X into Y.

Proof. For any f € C(X,Y), taking
F:XxI—=Y, (xt)— f(x)

we see that f is homotopic to itself, and hence “being homotopic maps” is a reflexive relation.
Let fo, f1 € C(X,Y) be such that f is homotopic to f; with homotopy F. Then the continuous
map

G:XxI—=Y, (x,t) = F(x,1—1t)

is a homotopy from f; to fy. So “being homotopic maps” is a symmetric relation. Let fo, f1, f> €
C(X,Y) be such that fy ~ f; with a homotopy F, and f; ~ f, with a homotopy G. Consider
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themap H : X x I — Y defined by

F(x,2t), if te€lo, 3],
H(x,t) :=
(x.t) {G(x,Zt—l), if tell1

Since at t = J, we have F(x,2t) = F(x,1) = f1(x) = G(x,0) = G(x,2t — 1), forall x € X, we
see that H is a well-defined continuous map (c.f., Lemma 3.2.3). Clearly H satisfies H(x,0) =
fo(x) and H(x,1) = fa(x), for all x € X. Therefore, H is a homotopy from fy to f,. Thus “being
homotopic maps” is a transitive relation, and hence is an equivalence relation on C(X,Y). O

Exercise 3.2.5. Let f,¢ € C(X,Y),and F : X x I — Y be a homotopy from f to g. Use F to
construct a homotopy G from f to g with G # F. Therefore, homotopy between two maps need
not be unique. (Hint: take G(x,t) = F(x,t?)).

Lemma 3.2.6. Let fo, f1 : X — Y be two continuous maps such that fy is homotopic to f1. Then for
any spaces Z and W, and continuous maps § : Z — Xand h : Y — W, we have fyo g ~ f1 0 g and

hofy~hofi.

fo
7 S.x"  y_rw
\_/
fi

Proof. Let F : X x I — Y be a continuous map such that F(x,0) = fp(x) and F(x,1) = f1(x),
forall x € X. Define G : Z x I — Y by setting

G(z,t) = F(g(2),t), ¥V (2,t) € Z x 1.

Clearly G is a continuous function with G(z,0) = F(g(z),0) = (focg)(z), and G(z,1) =
F(g(z),1) = (fi0g)(z), forall z € Z. Therefore, G gives a homotopy fy o g >~ f1 o g. Similarly,
taking

H:XxI—=W, (x,t) — h(F(x,1)),

we see that H is a continuous map satisfying H(x,0) = h(F(x,0)) = (ho fo)(x) and H(x,1) =
h(F(x,0)) = (ho f1)(x), for all x € X. Therefore, H gives a homotopy ho fy ~ ho fi. O

Definition 3.2.7. Let fy, f1 : (X,x9) — (Y,yo) be continuous maps of pointed topological
spaces. A homotopy from fj to fi is a continuous map F : X X I — Y such that

(i) F(x,0) = fo(x), Vx € X,

(i) F(x,1) = f1(x), Vx € X, and

(iii) F(xo,t) =yo, Vt € [0,1].
When we talk about homotopy of continuous maps of pointed topological spaces, we always
mean that the homotopy preserve the marked points in the sense of (iii) mentioned above.

Exercise 3.2.8. Let foy, f1 : (X,x0) — (Y, o) be two continuous maps of pointed topological
spaces. If f( is homotopic to f; in the sense of Definition 3.2.7, show that for any spaces Z and
W, and continuous maps g : (Z,z9) — (X, xo) and h : (Y,y0) = (W, wp), we have
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(i) fo o gishomotopic to fi o g in the sense of Definition 3.2.7, and
(ii) ko fo is homotopic to & o f1 in the sense of Definition 3.2.7.

Definition 3.2.9. Let X and Y be topological spaces. A continuous map f : X — Y is said to
be a homotopy equivalence if there exist a continuous map g : Y — X such that f o ¢ ~ Idy and
go f =~ Idx. In this case, we say that X is homotopy equivalent to Y (or, X and Y have the same
homotopy type), and write itas X ~ Y.

Lemma 3.2.10. Being homotopy equivalent spaces is an equivalence relation.

Proof. For any space X, we can take f = ¢ = Idx to get fog = Idx = go f so that X is
homotopy equivalent to itself (verify!). It follows from the Definition 3.2.9 that the relation
“being homotopy equivalent spaces” is symmetric. Let X, Y and Z be topological spaces such
that X ¥ Yand Y ~ Z. Let f; : X — Y and fo : Y — Z be homotopy equivalences. Then
there are continuous maps g1 : Y — X and g» : Z — Y such that g; o f1 ~ Idx, f1 o g1 ~ Idy,
g2 0 fr ~Idy and f, 0 g» >~ Idz. Now using Lemma 3.2.6 we have

(faofi)o(g1082) = fao(fiog1)og
~ foldyogo
:f2 ° g2 :Idz

Similarly, we have (g1 0 g2) o (f2 © f1) ~ Idx. Therefore, f, o f1 : X — Z is a homotopy equiva-
lence, and hence X ~ Z. Thus “being homotopy equivalent spaces” is a transitive relation, and

hence is an equivalence relation. O

Definition 3.2.11. A space X is said to be contractible if the identity map Idx : X — X is null
homotopic.

Exercise 3.2.12. Show that a contractible space is path-connected.

Corollary 3.2.13. A space X is contractible if and only if given any topological space T, any two
continuous maps f,g : T — X are homotopic.

Proof. Suppose that X is contractible. Let T be any topological space, and let f,g : T — X
be any two continuous maps. Since X is contractible, the identity map Idx : X — X of X is
homotopic to a constant map cy, : X — X given by cy,(x) = xo, Vx € X. Then f = Idx of is
homotopic to the constant map cy, o f : T — X. Similarly, g is homotopic to the constant map
cxyo8: T — X. Since ¢y, o f = ¢y, © g, and being homotopic maps is an equivalence relation
by Lemma 3.2.4, we see that f is homotopic to g. Converse part is obvious. O

3.3 Fundamental group

3.3.1 Construction

A path in X is a continuous map 7 : [ — X; the point (0) € X is called the initial point of vy,
and (1) € X is called the terminal point or the final point of -y.
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Definition 3.3.1. Fix two points xp, x; € X. Two paths f, g : I — X with the same initial point
xo and terminal point xq are said to be path homotopic if

(i) f(0) = g(0) = xpand f(1) = g(1) = x1, and
(ii) thereis a continuous map F : I x I — X such that for each t € I, the map
ve:1— X, s— F(s,t)

is a path in X from x( to x9, and that yg = fand 11 = g.

M"=8
X0 X1

x Yo=f

FIGURE 3.3: Path homotopy
Exercise 3.3.2. Given xg,x1 € X, let
Path(X;xo,x1) :=={f : I = X| f(0) = xq, f(1) = x1}

be the set of all paths in X starting at xp and ending at x1. Show that being path homotopic is
an equivalence relation on Path(X; xo, x1). (Hint: Follow the proof of Lemma 3.2.4).

Remark 3.3.3. If 7,6 : I — X are two paths in X, we use the symbol ¢y ~ J§ to mean v and
¢ are path-homotopic in X in the sense of Definition 3.3.1. Unless explicitly mentioned, by a
homotopy between two paths we always mean a path-homotopy between them.

A loop in X is a path y : I — X with the same initial and terminal point: i.e., ¥(0) = (1) =
xp € X; the point x is called the base point of the loop <. For aloop v : I — X based at xy € X,
let
[7]:={6:1— X]|6(0)=6(1) =xpand & ~ v},

the homotopy equivalence class of <. Fix a base point xg € X, and let

(X, x0) = {[7] | v : I = X with 7(0) = (1) = xo}

be the set of all equivalence classes of loops in X based at xy. Next we define a binary operation
on 711 (X, x0) and show that it is a group.

Given any two loops 71,72 : I — X in X with the base point xy € X, we define the product
of 1 with 7y, to be the map 1 x y2 : I = X defined by

@), if telo3],
1

(2t —1), if te[i1]. (3.3.4)

7

(11 x72)(t) == {

NI—
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That is, we first travel along y; with double speed fromt =0tot = %, and then along 7, from
t= % to t = 1. Clearly 77 % 7 is a continuous map with (1 0 2)(0) = (71 0 2)(1) = xp, and
hence 1 o 77 is a loop in X with the base point xg. Note that 1 * 2 7# 72 % ¥1, in general (Find
such an example).

Remark 3.3.5. In fact, we shall see later examples of topological spaces X admitting loops
71,72 : I = X with the same base point xy € X such that 1 * 77 is not homotopic to 2 x 1.

Proposition 3.3.6. Let 71, y2, 01, 62 be loops in X based at xy. If y1 =~ 01 and vy =~ Oy, then
(71 % 72) = (81 % 82). Consequently, the map

(X, x0) x (X, x0) = m1(X,x0), ([71], [72]) = [v1%72] (3.3.7)

is well-defined, and hence is a binary operation on the set 711 (X, xo).

Proof. Let F : [ x I — X be a homotopy from F(—,0) =y to F(—,1) =dj,andletG: I x [ —
X be a homotopy from G(—,0) = v, to G(—,1) = . Defineamap FxG : [ x I — X by
sending (s,t) € I x I to

(F*G)(S,t):—{ GF(ZSft)/ if 0<s<1/2,

(2s—1,t), if 1/2<s<1.

Clearly F % G is a continuous map with (Fx G)(—,0) = 1 %72 and (F* G)(—,1) = &1 x &,.
Therefore, 71 x y2 =~ 91 x d5. O

Theorem 3.3.8. The set 1t1(X, xg) together with the binary operation (3.3.7) defined in Proposition
3.3.6 is a group, known as the fundamental group of X with base point xy € X.

To prove this theorem, we use the following technical tool (Lemma 3.3.10).

Definition 3.3.9. A reparametrization of a path v : I — X is defined to be a composition 7y o ¢,
where ¢ : I — [ is a continuous map with ¢(0) = 0and ¢(1) = 1.

Lemma 3.3.10. A reparametrization of a path preserves its homotopy class.

Proof. Lety:1 — X be apathin X. Let
'yoq):Il>Il>X

be a reparametrization of 7 in X, for some continuous map ¢ : I — I with ¢(0) = 0 and
¢(1) = 1. Consider the straight-line homotopy from ¢ to the identity map of I given by

pi(s) == (1—t)p(s)+ts, Vs, tel.
Now it is easy to check that the map
F:IxI—=X, (s,t)— v(e:(s)),

is continuous and satisfies F(s,0) = (7o ¢)(s) and F(s,1) = (s), for all s € I. Therefore,
7 o ¢ ~ <y via the homotopy F. O
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Proof of Theorem 3.3.8. We need to verify group axioms.

Associativity: Given any three loops 1, 72,73 : I — X based at xy, it is enough to show that
(71 % 72) * 13 2 71 % (Y2 % 73)-

z\t

fo1 T Y2 T3 1% (2 %73)
(71 %72) * 73
T T2 E) s s
o 1 1 3 1
4 2 4

FIGURE 3.4: Homotopy for associativity

Note that
Ti(4t), if 0<t<1/4,
((r1x72) *73)(t) = ¢ 7(4t—1), if 1/4<t<1/2,
(2t —1), if 1/2<t<1,
and

’)/1(2t), if 0<t<1/2,
(rix(r2x73))(t) = 724t —2), if 1/2<t<3/4,
va(4t—3), if 3/4<t<1.

It’s an easy exercise to check that 1 x (72 x 73) is a reparametrization of (71 x 72) * 73 by a
piece-wise linear function (hence, continuous) ¢ : I — I defined by

t/2, if 0<t<1/2,
p(t)y=< t—1, if 1/2<t<3/4,
2t—1, if 3/4<t<1,

(see Figure 3.5). Then using Lemma 3.3.10 we conclude that y1 * (772 * y3) = (71 * 72) * 3.

FIGURE 3.5: Graph of ¢

Existence of identity: Let e € 11 (X, xo) be the homotopy class of constant loop,
Cxp i I = X, t— xo,

at xg. Let v : I — X be any loop in X based at x(. Since y x cy, is a reparametrization of v via
the function
2t, if 0<t<1/2,
p(t) = .
1, if 1/2<t<1,
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by Lemma 3.3.10 we have 7 % ¢y, ~ <. Similarly, cy, x y is a reparametrization of y by via the
function

0, if 0<t<1/2,
n(t) = .
26—1, if 1/2<t<1,

by Lemma 3.3.10 we have cy, x v ~ 7.

Existence of inverse: Given any loop -y in X based at x(, we can define its inverse loop or opposite
loop 7y : I — X by setting 7(t) = y(1 —t), for all t € I. We need to show that y % ~ ¢y, and
Y * Y 2 Cy,y. To show ¢y x 7 ~ cy,, consider themap H : I x [ — X given by

H(s,t) := fi(s) *ge(s), ¥V (s, t) € Ix1,
where f; : [ — X is the path defined by

(s), for 0<s<1—t4,
fi(s) =
y(1—1), for 1—t<s<1,

and g : I — X is the inverse path of f, i.e., gi(s) = fi(1 —s), Vs € I. It is an easy exercise to
check that H is a continuous map satisfying

H(s,0) =y %7, and H(s,1) =cy, Vsel.

The homotopy H can be understood using the Figure 3.6. In the bottom line ¢t = 0, we have

Cxy

I
07271

FIGURE 3.6: Homotopy H

7 * 7 while on the top line t = 1 we have the constant loop cy,. And below the ‘V’ shape we
let H(s,t) be independent of t while above the ‘V’ shape we let H(s, t) be independent of s.
Therefore, we have ¥ x 7 =~ cy,. Interchanging the roles of ¢ and 7 in the above construction,
we see that 4 x v ~ cy,. Therefore, 711 (X, x¢) is a group. O

3.3.2 Functoriality

By a pointed topological space we mean a pair (X, xo) consisting of a topological space X
and a point xy € X. In the above construction, given a pointed topological space (X, xp) we
attached a group 71(X, x¢), known as the fundamental group of X with the base point at x. Next
we see how fundamental group of a pointed space behaves under continuous maps and their
compositions.
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Let f : (X,x0) — (Y,yo) be a continuous map of pointed spaces (this means, f : X — Y is
a continuous map with f(xg) = yp). Let v : I — X be a loop in X based at xo. Then the

composition f o 7,

I5x Ly

is a loop in Y based at f(xg) = yo. Lety, 6 : I — X be loops in X based at xp. If F: [ x I — X
is a homotopy from 7y to J, then f o F : I x I — Y is a homotopy from f oy to f 0§ (see Lemma
3.2.6). Thus we have a well-defined map

fe (X, x0) = m(Y, yo), [v] = [feonl. (3.3.11)

Proposition 3.3.12. The map f. : m1(X, xo) — m1(Y, yo) induced by f is a group homomorphism.

Proof. Note that for any two loops 7, 6 : I = X based at x, we have

fe(lyxd]) = [f o (y*9)]
= [(for)x(fo9)]
=[fon]-[fod]
= fe([7]) - £ ([0

O

Remark 3.3.13. If f, : m1(X, x9) — m1(X, x0) is the homomorphism of fundamental group of
a pointed topological space (X, xg) induced by the identity map of (X, x() onto itself, then it
follows from the construction of the map f. givenin (3.3.11) that f« = Id, (x x,), the identity
map of 711(X, xp) onto itself.

Proposition 3.3.14. Let f : (X, xo) — (Y, yo) and g : (Y, yo) — (Z, zo) be continuous maps of
pointed spaces. Then g, o f. = (g o f)«. In other words, the following diagram commutes.

m (X, xo) (Y, yo)
8
m1(Z, zo)
Proof. Left as an exercise. O

Corollary 3.3.15. If f : (X, x0) — (Y, yo) is a homeomorphism of pointed spaces with its inverse
g: (Y, yo) = (X, x0), then fi : 11 (X, x0) — m (Y, yo) is an isomorphism of groups with its inverse
g« 1 (Y, yo) — (X, xo).

Proof. Since go f =1Idx, ) and f o g = Idy, ), applying Proposition 3.3.14 we have g, o f, =
Idﬂl(szo) and f* 0Zgx = Idﬂl(Y,yo)' O

Lemma 3.3.16. Homotopic continuous maps of pointed topological spaces induces the same homomor-
phism of fundamental groups.
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Proof. Let f,g: (X,x0) — (Y, y0) be two continuous maps of pointed space. If f is homotopic
to g in the sense of Definition 3.2.7, then for any loop ¢ : I — X based at x(, using Exercise
3.2.8 (c.f. Lemma 3.2.6) we have f o y is homotopic to g o -y in the sense of Definition 3.2.7, and
hence f.([v]) = [fov] = [g o 7] = g«([7]). Hence the result follows. O

Definition 3.3.17. A category ¥ consists of the following data:

(i) a collection of objects ob(%),

(ii) for each ordered pair of objects (X, Y) of ob(¢), there is a collection Mor (X, Y), whose
members are called arrows or morphisms from X to Y in €; an object ¢ € Morg(X,Y) is
usually denoted by an arrow ¢ : X — Y.

(iii) for each ordered triple (X, Y, Z) of objects of ¢, there is a map (called composition map)
o:Morg(X,Y) x Morg(Y,Z) — Mory (X, Z), (f,g) —gof,

such that the following conditions hold.

(a) Associativity: Given X,Y,Z,W € ob(¥), and f € Morg(X,Y), § € Morg(Y,Z) and
h € Morg(Z,W),wehaveho (go f) = (hog)o f.

(b) Existence of identity: For each X € ob(%¢), there exists a morphism Idx € Mory (X, X)
such that given any objects Y, Z € ob(%’) and morphism f : Y — Z we have f oldy =

fandIdzof = f.

Example 3.3.18. (i) Let (Set) be the category of sets; its objects are sets and arrows are map
of sets.

(i) Let (Grp) be the category of groups; its objects are groups and arrows are group homo-
morphisms.

(iii) Let (7op) be the category of topological spaces; its objects are topological spaces and

arrows are continuous maps.

(iv) Let (Ring) be the category of rings; its objects are rings and morphisms are ring homo-
morphisms.

Definition 3.3.19. Let € be a category. A morphism f : X — Y in ¢ is said to be an isomor-
phism if there is a morphism g : Y —+ X in ¢ such that go f = Idx and f o g = Idy.

Definition 3.3.20. Let ¥ and 2 be two categories. A covariant functor (resp., a contravariant
functor) from € to Z is arule
F:€—=9

which associate to each object X € ¥ an object F(X) € %, and to each morphism f €
Mory (X, Y) amorphism F(f) € Morg(F(X), F(Y)) (resp., amorphism F(f) € Morg(F(Y), F(X)))
such that

(i) F(ldx) = Idz(x), forall X € ¢, and
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(i) given any objects X,Y,Z € ¢ and morphisms f € Mory(X,Y) and g € Mory (Y, Z), we
have F(go f) = F(g) o F(f) (resp., F(g o f) = F(f) o F(g))-

If 7 : € — Z is a functor, for each ordered pair of objects X,Y € € we denote by Fx y the
induced map
Fxy :Morg(X,Y) = Morg (F(X), F(Y)),

defined by Fx y(f) := F(f). The same notation is used for contravariant functor.

Definition 3.3.21. A functor F : € — 2 is said to be

(i) faithful if Fx y is injective, V X, Y € F.
(ii) full if Fx y is surjective, V X, Y € €.
(iil) fully faithful if Fx y is bijective, V X,Y € €.

(iv) essentially surjective if given any object Y € Z, there is an object X € ¢ and an isomor-
phism ¢ : F(X) = Yin 2.

(v) equivalence of categories if there is a functor G : 2 — € suchthat Go F = Idy and F o G =
Idy. This is equivalent to say that F is fully faithful and essentially surjective.

Remark 3.3.22. Let Top, be the category of pointed topological spaces; its objects are pointed
topological space, and given any two pointed topological spaces (X, xg) and (Y, 1), a mor-
phism f : (X,x9) — (Y, yo) in Top, is a continuous map f : X — Y such that f(xy) = yo. Then
it follows from Propositions 3.3.12 and 3.3.14 and the Remark 3.3.13 that

my : Topy — (Grp)
(X, xo) = 711(X, x0)
fefx

is a covariant functor from the category of pointed topological spaces to the category of groups.
It follows from Lemma 3.3.16 that the functor 711 is not faithful. It is a non-trivial fact that 71;
is not full. (i.e., there exist pointed topological spaces (X, xg) and (Y, o), and a group homo-
morphism ¢ : 71(X, x9) — m1(Y,yo) such that ¢ # f,, for all continuous map f : (X, xp) —
(Y,y0).) However, 1y is essentially surjective (i.e., given any group G there is a pointed topolog-
ical space (X, x¢) such that 711 (X, xg) = G).

3.3.3 Dependency on base point

Now we investigate relation between fundamental groups of X for different choices of base
point. Let xg,x; € X. Let f : I — X be a path in X joining xg to x, i.e., f is a continuous map
satisfying f(0) = xp and f(1) = x;1. We define the opposite path of f to be the map

fil—=X t— f(1-1t); (3.3.23)

note that f(0) = x1 and f(1) = xo, hence f is a path from x; to xo.
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Exercise 3.3.24. Show that f x f ~ cy, and f * f ~ cy,, where ~ stands for path-homotopy

relation (see Definition 3.3.1).

Given a loop v in X based at x;, we can define 7 := fxyx f. Note that 7 : [ — X isa
continuous map satisfying 7(0) = f(0) = xo = f(1) = (1), and hence is a loop in X based
at x1. Strictly speaking, we have two choices to define this product 7, namely (f x ) % f or
f* (7* f), but we are interested in only homotopy classes of paths, and following the proof of
associativity as in Theorem 3.3.8 one can easily verify that (f xy) * f ~ f % (7 x f), therefore,
we just fix one ordering of taking products to define 7.

If v and 7/ are two loops in X based at x; with ¢ ~ 7/ via a homotopy {4 };c, then { f * iy %
f}ier is a homotopy from 7 to 7' (Exercise: Write down the homotopy explicitly and check details).
Thus, we have a well-defined map

Br:m(X,x1) = mi(X,x0), [v] = [(f*7)*fl. (3.3.25)

Proposition 3.3.26. The map By defined in (3.3.25) is a group isomorphism.

Proof. Since f x f ~ cy, for any two loops 7 and ¢ in X based at x;, using Exercise 3.3.24, we
have

fr(yx0)* f oz foyxcy *O*f
~ (fryxf)x(fxoxf).

Therefore, B¢([7 xd]) = [f* (7% 8) x f| = [f x v * fI[f x 6+ f] = B([7])B£([4]), and hence B
is a group homomorphism. To show B an isomorphism of groups, it is enough to show that

the group homomorphism

By m(X,x0) = m(X,x1), [v] = [fxy*f]
is the inverse of B¢. Indeed, for any v € 71(X, x9) we have
Br(B7([vD) = Br([f+v* f])
=[x frrxfrfl

= [exo * v * exo] = [7],
and similarly, for any ¢ € 711 (X, x1) we have

B7(Br([0])) = Br([f o* f1)
= [fxfroxfxf]

= [cx, * O % cyy ] = [0].

Therefore, ﬁf is the inverse homomorphism of B, and hence both of them are isomorphisms.
O
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Remark 3.3.27. Thus if X is a path connected space, up to isomorphism its fundamental group
is independent of choice of base point, and so we may denote it by 711 (X) without specifying
its base point.

Proposition 3.3.28. Let f,g : X — Y be two continuous maps of topological spaces. Fix a point
xo € X, and let yy = f(xg) and y; = g(xp). Let F : X x I — Y be a continuous map such that
F(—,0) = fand F(—,1) = g. Then for any loop <y in X based at xo, the loop f o <y is path-homotopic
to the loop Fyx (goy)*xFyin Y, where Fy : [ — Y is the path in Y defined by Fy(t) = F(xo,t), Vt € L.

x
(X, xo)

X ,BFO

m1(Y, yo)

(Y, y1)

Proof. Left as an exercise. O

Corollary 3.3.29. Let f,g : X — Y be two homotopic continuous maps of topological spaces. Let
xo € X be such that f(xo) = g(xo) = yo € Y. Then the homomorphisms of fundamental groups f
and g, induced by f and g, respectively, are conjugate by an element of 7t1(Y, yo). In other words, there

exists an element [] € 111(Y, yo) such that g..([v]) = [n]f«([v) 7]~ for all [y] € m1(X, xo).

Proof. Let F : X x I — X be a continuous map such that

) flx), if t=0,
Fixt) = { g(x), if t=1

Then by Proposition 3.3.28 we have g.([v]) = [1]f«([v])[#] 7}, for all [y] € m1(X, x0), where
1 : I — Y is the loop defined by #(t) := F(xo,t), Vt € I. O

Corollary 3.3.30. If f, g : (X, x0) — (Y, yo) are two homotopic continuous maps of pointed topological
spaces (see Definition 3.2.7), then f, = g.

Proof. Follows from Corollary 3.3.29. O

Definition 3.3.31. A space X is said to be simply connected if X is path connected and 71 (X) is
trivial.

Corollary 3.3.32. A contractible space (see Definition 3.2.11) is simply connected.

Proof. Let X be a contractible space. Then X is path-connected by Exercise 3.2.12. Fix a point
xg € X,and letcy, : X — X be the constant map sending all points to x(. Since X is contractible,
the identity map Idx : X — X is homotopic to the constant map cy, in X. Then by Corollary
3.3.29 the identity homomorphism Id ;, (x ) : 71(X, x0) — 71(X, x0) is conjugate to the trivial
homomorphism (cy, )« @ m1(X,x9) — 71(X, %) by an element of 711(X, xp). Therefore, the
image of the identity homomorphism Id,; (x ) is trivial, and hence 711 (X, x¢) is trivial. O

Corollary 3.3.33. A space X is simply connected if and only if there is a unique path-homotopy class of
paths connecting any two points of X.
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Proof. Suppose that X is simply connected. Fix xq, x; € X. Since X is path-connected, there is a
path in X joining xo to x1. Let f,¢ : [ — X be any two paths in X from xj to x;. Let f and g be
the opposite paths of f and g, respectively. Since f x g is a loop in X based at x and 771 (X, x)
is trivial, we have f x g is path-homotopic to the constant loop ¢, in X based at xj. Since g * ¢
is path-homotopic to the constant loop cy, by Exercise 3.3.24, we have

forfrey X frgxg ey, *g ™™g

To see the converse part, note that path connectedness of X means any two points of X can
be joined by a path in X. Since there is a unique homotopy class of paths connecting any two
points of X, path connectedness of X is automatic, and any loop in X based at a given point
xo € X is homotopically trivial. Thus, X is path connected with 711 (X, xp) trivial, and hence is
simply connected. O

Proposition 3.3.34. 711(X x Y, (x0, ¥0)) = m1(X, x0) x 11 (Y, yo)-

Proof. Note that X x Y naturally acquires product topology induced from X and Y, and the
projectionmaps p1 : X X Y — X and p : X x Y — Y defined by p1(x,y) = xand p2(x,y) =y,
for all (x,y) € X X Y, are continuous. Moreover, given any space Z and amap f : Z —
X x Y, we have f = (pjof, poo f). From this, it follows that f is continuous if and only if
its components pjo f : Z — X and ppo f : Z — Y are continuous. Therefore, to give a loop
7:1— X x Ybased at (xp, yo) € X x Y is equivalent to give a pair of loops (p1 07y, p2 o 7y) in
the pointed spaces (X, xg) and (Y, o), respectively. Similarly, to give a homotopy F : [ x I —
X x Y of loops 7,8 : I — X x Y based at (xg, )) is equivalent to give a pair of homotopies
(p1oF, pa o F) of the corresponding loops p; o v with p; o 5, where j € {1,2}. Thus we have a
bijection

¢:m(X XY, (x0, ¥o)) = (X, x0) x T (Y, yo), [v] = ([p1ov], [p2o7])-

To see ¢ is an isomorphism, note that for any two loops 7 and d in X x Y based at (xo, yo) €
X x Y, we have

p1o(y*0)], [p2o (v*9)])
pro)x(p109d)], [(p2o7)* (p209)])
pro)l-[(p1od)], [(p2om)] - [(p209)])
p1o7) [p2o7]) - ([p1o9d], [p2od])

—~~

This completes the proof. O

Example 3.3.35. As animmediate application of Proposition 3.3.34 we see that the fundamental
group of the 1-torus S! x S! is isomorphic to Z x Z.

We end this subsection with the following useful remark.
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Remark 3.3.36. A loop in X based at xy can equivalently be defined as a continuous map of
pointed spaces 7 : (S!, 1) — (X, x¢). Indeed, since a loops in X based at xg € X is a continuous
map 7 : [ = [0, 1] = X with 1(0) = (1) = xo, and since S! is homeomorphic to the quotient
space [0, 1]/ ~, where only the end points 0 and 1 of the interval I are identified, v : [ — X

uniquely factors as

] ——X

st~

where g : I — S is the quotient map given by g(t) = ¢>™*, for all t € I. Therefore, 771 (X, xo) is
the group of all homotopy classes of continuous maps (S',1) — (X, xo).

3.3.4 Fundamental group of some spaces

Proposition 3.3.37. 71(R, 0) = {1}.

Proof. Consider the continuous map F : R x I — R defined by
F(x,t)=(1—-t)x, V(x, t) eRXI.

Note that, for all x € R and ¢t € I we have

* F(x,0)=x,
® F(x,1) =0,and

e F(0,t) =0.

Therefore, F “contracts” whole R to the point 0 leaving the point 0 intact at all times. Let
v : I = R be aloop based at 0. Then the composite map

X

Fo(yxid):IxIT¥Rx1 R

is a homotopy from 7 to the constant loop 0 : I — IR which sends all points of S! to 0 € R. This
completes the proof. O

Proposition 3.3.38. Let
D?:={zeC:|z| <1} ={(x,y) eR?: X2 +¢*> <1}
be the closed unit disk in the plane. Then 7ty (D?, 1) = {1}.
Proof. Consider the map F : D?> x I — D? defined by
F(z,t) = (1—t)z+t, ¥V (z,t) € D*x L

Note that F is continuous and for all z € D? and t € I we have
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* F(z,0) =z

* F(z,1) =1,and

e F(1,t) =1.
Therefore, F contracts D? to the point 1 leaving 1 intact at all times. Let 7y : I — D? be a loop
based at 1. Then the composite map

Fo(yxld):Ix17% p2x1 tp

is a homotopy from 7 to the constant loop 1 : I — D? which sends all points of [ to 1 € D?.
This completes the proof. O

3.4 Covering Space

3.4.1 Covering map

We begin this section with an aim to compute fundamental group of the unit circle in plane
S'={zeC izl =1} = {(x,y) eR2 : 2 +y2 = 1},

and we’ll see how the idea of a ‘covering map’ could help us.

Let w : I — S! be the map defined by w(t) = e2mit Yt € I, where i = /—1. Then w
is a loop in S! based at xg := 1 € S!. For each integer , let wy, : I — S! be the loop based
at xo defined by wy(t) = €¥™, V t € I. So w, winds around the circle |n|-times in the anti-
clockwise direction if n > 0, and in the clockwise direction if n < 0. We shall see later that
[w]" = [wy] in 711 (SY, 1), for all n € Z. The following is the main theorem of this section.

Theorem 3.4.1. 711(S!, xg) is the infinite cyclic group Z generated by the loop w.
To prove this theorem, we compare paths in S! with paths in R via the

map
p: R — Slgiven by p(s) = (cos27s,sin27s), V's € R.

We can visualize this map geometrically by embedding R inside IR? as the

helix parametrized as
s — (cos27s, sin27s, s),

and then p is the restriction of the projection map

0=

R® — R?, (x,y,z) — (x,y)
FIGURE 3.7
from this helix onto S' C R?, as shown in the Figure 3.7.
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In this setup, the loop
wy: =8t s (cos2n7ts, sin 2n7ts)
is the composition p o Wy, where
wy:I—R, s—ns
is the path in R starting at 0 and ending at 1, winding around the helix |n|-times, upward

direction if n > 0, and downward direction if n < 0.

Before proceeding further, we introduce notion of a covering map, and discuss some of its

useful properties.

Definition 3.4.2. Let f : X — Y be a continuous map. An open subset V C Y is said to be
evenly covered by f if f~1(V) is a union of pairwise disjoint open subsets of X each of which are

homeomorphic to V by f (meaning that, f~1(V) = |J U;, where U; C X is an open subset of X
iel

with U;NU; = @, foralli # jin I, and f’u : U; — V is a homeomorphism, for all i € I).

Example 3.4.3. (i) Let f : R — S! := {z € C : |z| = 1} be the map defined by f(t) = ¢*™ =
(cos2mt, sin2mt), forall t € R. Fora, b € R with a < b, we define an open subset

Vop:={f(t):a<t<b}CSh.

If b —a < 1, then V,; is evenly covered by f. In fact, in this case, we have f~1(V, ;) =

1:; (_1)0) GSi

FIGURE 3.8

U (a+mn,b+n),and f: (a+n,b+n) — V,,isahomeomorphism, ¥ 1 € Z. See Figure
nez
3.8.
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Ifb—a > 1,then V,, = S!, and hence f1(V, ;) = R. In this case, V, j, is not evenly

covered by f, for otherwise we would have R = || U; with each U; open subset of R
il

and f |uv : U; — S!is a homeomorphism, which is not possible because S! is compact,

whereas an open subset of R cannot be compact.

(i) Let Rsg:= {t € R: t > 0} be the positive part of the real line. Let
f:Rsg— S, t— e, (3.4.4)

For any point x € S! with x # 1 := (1,0) € S!, we can choose a small enough open
neighbourhood V of x in S! with 1 ¢ V. Then it is easy to see that V is evenly covered by
f. However, there is no evenly covered neighbourhood of 1 € S!. To see this, note that

V_Q]é
1-(1,0)¢S'

FIGURE 3.9

if U C V is an open subset of an evenly covered neighbourhood V, then U is also evenly

covered. Thus, if there is a neighbourhood V' of 1 which is evenly covered, then we may

find e € (0,1/2) small enough such that V_.  C V, and hence V_¢ ¢ is evenly covered.

Then we must have f ’1(V,€,€) = ‘LII U;, with f |Ui : U; = V_¢, e homeomorphism, for all
ic

i € I. In particular, each U; is connected and are path components of f~1(V_¢ ). Let Uy
be the path component of €/2 € R+. Since

FH(Vege) = 0,e)J (U (n _€/”+€)> /

n>1

we must have Uy = (0,€). But f]| 00 (0,€) = V_¢, e cannot be surjective because only
possible preimage of 1 € V_¢ . in RT could be positive integers, and none of which are
in the domain of f| 0,6)° Thus we get a contradiction. See Figure 3.9. Therefore, there is

no evenly covered neighbourhood of 1 € S! for the map f in (3.4.4).

Definition 3.4.5. A continuous map f : X — Y is called a covering map if each point y € Y has
an open neighbourhood V;, C Y that is evenly covered by f.
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Note that, a covering map is always surjective. This follows immediately from the Defini-
tion 3.4.5.

Example 3.4.6. (i) Let F be a non-empty discrete topological space, and let X be any topo-
logical space. Give X x F the product topology. Then the projection map pry : X x F = X
defined by prq(x,v) = x, V (x,v) € X x F, is a covering map. Such a covering map is
called a trivial cover of X.

(if) The continuous map
fiR =S, t e,

as discussed in Example 3.4.3 (i), is a covering map, while its restriction f |]R LRt =St
in Example 3.4.3 (ii), is not a covering map.

(iii) Themap f : C — C* :=C \ {0} defined by f(z) = ¢%, for all z € C, is a covering map.

(iv) Fix an integer n > 1. Then the map f : C* — C* defined by f(z) = z", forallz € C,isa

covering map, known as the n-sheeted covering map of C*.

Exercise 3.4.7. If f; : X; — Y; is a covering map, for i = 1,2, show that the map f; x f> :
X1 x Xo — Y7 x Y, defined by sending (x1,x2) € X3 X Xp to (f1(x1), fa(x2)) € Y1 X Yz, isa
covering map.

Exercise 3.4.8. If f : X — Y is a covering map, for any subspace Z C Y, the restriction of f on
f~1(Z) C X is a covering map.

Definition 3.4.9. Let p; : Y1 — X and py : Yo — X be two covering maps. A morphism of
covering maps from p; to p; is a continuous map ¢ : Y; — Y3 such that pp o ¢ = p;. In other
words, the following diagram commutes.

Y; N
A morphism of covering maps ¢ : Y1 — Y> is said to be an isomorphism of covering maps if there
is a covering map ¢ : Y, — Y; such that ¢ oy = Idy, and p o ¢ = Idy,. In other words, an
isomorphism of covering spaces is a homeomorphism of the covers compatible with the base.

An isomorphism of a covering map p : Y — X to itself is called a Deck transformation or a
covering transformation.

Exercise 3.4.10. Show that any covering map p : Y — X is locally trivial (i.e., each point
x € X has an open neighbourhood U, C X such that the restriction map p : p~(Uy) — Uy is
isomorphic to a trivial covering map over Uy).

A continuous map f : X — Y is said to be an open map if for any open subset U of X, f(U)
isopenin Y.

Proposition 3.4.11. If f : X — Y is a covering map, then f is an open map.
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Proof. Let U C X be an open subset of X, and let y € f(U). Then there is xo € U such that
f(xg) = y. Since f is a covering map, there is an open neighbourhood V C Y of y such that

:Wj—>V
j

fY(v) = U Wi is a union of pairwise disjoint open subsets W; C X, and that f ]W

j€]
is a homeomorphism, for all j € J. Then xo € U N W;, for some unique iy € I. Since f ’Wv is a
homeomorphism, f(U N W) C V is an open neighbourhood of f(xp) = y. Since V' is open in
Y, f(UNW;)isopeninY. Thus f(U) is open in Y, and hence f is an open map. O

Theorem 3.4.12 (Lifting path to a cover). Let f : X — Y be a covering map. Let v : [0,1] — Y
be a path in Y. Fix a point xg € X such that f(xg) = yo := v(0). Then there is a unique path
7 :[0,1] = X with ¥(0) = xgand f oy = .

-

~ -
Y -
- f
-
-
~

[0,1] ————Y

The path 7 is called a lift of -y in X starting at x.

Proof. We first prove uniqueness of lift of -y, if it exists. Let 171,772 : [0,1] — X be any two
continuous maps such that #1(0) = xo = #2(0) and f o3 = v = f o 575. We need to show that
71 =z on [0,1]. Let

S={te[01] : m() = m®)}

Since both 771 and 7, are continuous, S is a closed subset of [0, 1]. Note that S # @ since 0 € S.
Since [0, 1] is connected, it is enough to show that S is both open and closed in [0, 1], so that S
is a connected component of [0, 1], and hence S = [0, 1].

q?

I % 8
RV

L)
—ty 5 W = Ty
X o W 1 X

FIGURE 3.10

Fixat € S, and let V C Y be an open neighbourhood of y := < (t) that is evenly covered
by f. So f~1(V) = U Uj, where {Uj,}/¢; is a collection of pairwise disjoint open subsets of
i€l

X each of which gets mapped homeomorphically onto V by f. Then there are j;,j» € ] such
that 71 (t) € U, and 12(t) € Uj,. Since 11 and 7, are continuous at t € [0, 1], there is an open
neighbourhood W C [0,1] of ¢ such that 71 (W) C U}, and 72(W) C Uj,. Since U; NU;, = @
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for j1 # jo, and since 171 (t) = 12(t) by assumption, we must have j; = j, and U;, = Uj,. Since
f |u- : U; — V is injective (in fact, homeomorphism), for all j € ], and f oy = f o172, we must
j

have 1, = iyz{w. Therefore, W C S. Thus § is both open and closed in [0, 1], and hence is the

lw
connected component of [0, 1]. Therefore, S = [0, 1], and hence 77 = 1, on [0, 1].
Remark 3.4.13. Note that, by replacing [0,1] with any connected topological space T in the

above proof of uniqueness of lift of v, we get the following result:

Lemma 3.4.13. Let f : X — Y be a covering map. Let 51, 112 : T — X be any continuous maps such
that f oy = f ouy. If T is connected and 111 (t) = n2(t), for some t € T, then 171 = 17 on whole T.

To complete the proof of Theorem 3.4.12, it remains to construct an explicit lift of 7y to the
cover f : X — Y starting at xy. For this we use a result from basic topology course, called
Lebesgue number lemma.

Lemma 3.4.14 (Lebesgue number lemma). Let {U;};c; be an open cover of a compact metric space
(X,d). Then there isa & > 0 such that for each xo € X, the open ball Bs(xo) is contained in U, for
some jo € J.

Since f : X — Y is a covering map, we can write Y = {J Vy, where Vy C Y is an open
yeY

neighbourhood of y that is evenly covered by f, forall y € Y. Since [0,1] = U v '(V}), by
yeY

Lebesgue covering lemma (c.f. Lemma 3.4.14) we can find a 6 > 0 such that for each t € (0,1)
thereisay; € Y such that y([t — 5, t + §] N [0, 1]) C Vj,. Choose n >> 0 such that 1 < §, and

write

n—1
0,1] = kL:JO Ll; qu-l} :

Now ([0,1/n]) C Vj, for some open subset V C Y evenly covered by f, and yo = ¥(0) € Vj.
Write
F o) = U,
i€l
where {Uj ;}je; is a collection of pair-wise disjoint open subsets of X each of which are home-
omorphic to Vj via the restriction of f onto them. Since xg € f~1(1}), there is a unique jy € |
such that xo € Uy, j,- Let so : Vo — Uy, j, be the inverse of the homeomorphism f | Uy Clearly

s0(¥o0) = xo. Consider the map 7o : [0, 2] — U, j, defined by

To(t) == so(v(£)), V te[0,1/n].

Then 7 satisfies 79(0) = xg and f o7y =y on [0, 1].

Letx; = Yo(1) and y; = (1) = (f 0 %) (). Then there is an open subset V; C Y which is
12
n’n

evenly covered by f and y([, £]) C Vj. Proceeding in the same way as above, we can write

) = Uy,

j€]
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where Uy, ; are pairwise disjoint open subsets of X each of which are homeomorphic to V; by
the restriction of f onto them. Since x; = ’70(%) € f1(V}), thereisa j; € J suchthatx; € Uy,
Lets; : Vi — Uy, j, be the inverse of the homeomorphism f : U, i — V1. Clearly s1(y1) = x1.
Then the continuous map 71 : [+, 2] — Uy, j, defined by

n’n

() =s1(v(t), Ve [1/n, 2/n]

satisfies 71() = x; and fo7J; = 7 on [1, 2]. Since the maps 7 and 7; agrees on [0, 1] N
[1,2] = {1}, by Lemma 3.2.3 we can join them to get a continuous map 7 : [0, 2] — X such

that 7(0) = xp and f o4 = 7 on [0, 2]. Proceeding in this way we can construct a lift 7 of 7 to
the whole [0, 1] as required. O

Next we lift homotopy from a base to its cover.

Lemma 3.4.15 (Glueing continuous maps). Let X and Y be two topological spaces. Let {U;}jc;
be an open covering of X. Then given a family of continuous maps {f; : U; — Y}icj satisfying
fj|Uj“Qk = fk|ujmuk,for all j,k € J, there is a unique continuous map f : X — Y such thatf!uj = fi,
forallj e ].

Proof. Left as an exercise. O

Theorem 3.4.16 (Lifting homotopy to covers). Let I := [0,1] C R. Let f : X — Y be a covering
map. Let F : [ x [ — Y be a continuous map. Let yo := F(0,0) and fix a point xo € f ' (yo). Then
there is a unique continuous map F : I x I — X such that F(0,0) = xqand f o F = F.

Proof. Since I x I is connected, uniqueness of F, if it exists, follows from Remark 3.4.13. We

only show a construction of such a lift F.

It is enough to show that, for each s € I there is a connected open neighbourhood Us C I of
s € I'such that F can be constructed on Us x I. Indeed, since {Us x I : s € I} is a connected open
covering of I x I and those F’s agree on their intersections (Us x I) N (Uy x I) = (UsNUy) x I,
which are connected (because U, are open intervals), uniqueness of liftings F’s defined on
connected domains ensures that they can be glued together to get a well-defined continuous
map F : I x [ — X such that F(0,0) = xpand foF = FonI x I.

Now we construct such a lift F : U x I — X, for some open neighbourhood U C I of a
given point sy € I. Since F is continuous, each point (sg,t) € I x I has an open neighbourhood
U x (ag, by) C I x I such that F(U; x (at, b)) is contained in some open neighbourhood of
F((so,t)) € Y thatis evenly covered by f. Since {so} x I is compact, finitely many such open
subsets U; x (at, by) cover {sp} x I. Taking intersection of those finitely many open subsets
U; C I, we can find a single open neighbourhood U C I of sy and a partition 0 = ty < t; <
<o+ < bty = 1of I = [0,1] such that for each i € {0,1,...,m}, F(U X [t;, t;11]) C V;, for some
open subset V; C Y that is evenly covered by f.

By Theorem 3.4.12 (Lifting paths to a cover), we can find a unique continuous function
F:Ix{0} — X with F(0,0) = xgand foF = F|I><{O}' Assume inductively that F has
been constructed on U x [0, t;], starting with the given F on U x {0} C I x {0}. Since F(U x
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[ti, tiv1]) € V;, and V; is evenly covered by f, there is an open subset W; C X such that
F(so, t;) € W; and f ‘Wi : Wi — V; is a homeomorphism. Replacing U by a smaller open
neighbourhood of sy € I, if required, we may assume that F(U x {t;}) C W;; for instance, it is
enough to replace U x {t;} with (U x {t;}) N (ﬁ‘uX{ti})_l(Wi)' Then we can define F on U x
[t;, ti11] to be the composition ¢ o F, where ¢ : V; — W; is the inverse of the homeomorphism
1l W, W; — V;. Continuing in this way, after a finite number of steps, we get a continuous map
F:UxI— XwithF(0,0) =xpand foF = F|,;. ;- as required. O

Lemma 3.4.17. Let f : X — Y be a covering map, and let v : I — X be a continuous map. If f oy is
a constant map, so is .

Proof. Suppose that (f o y)(t) = yo, forall t € I. Let V C Y be an open neighbourhood of yg
that is evenly covered by f. Then f~1(V) = || U,, where {U,},cn is a family of pairwise
aEN

disjoint open subsets of X with f |u“ : Uy — V a homeomorphism, for all « € A. Since
Y(t) € f~1(V), forall t € I, and I is connected, there is a unique ag € A such that y(t) € Uy,,
for all t € I. Since f |ch is a homeomorphism, its restriction on the image of v must be a

0
homeomorphism; this is not possible since f o - is a constant map. O

Corollary 3.4.18 (Lifting of path-homotopy). Let f : X — Y be a covering map. Let yg,v1 : I =Y
be two paths in Y with yo(0) = 11(0) = yo and yo(1) = 11(1) = y;. Let F : IxI — Y bea
path-homotopy from yq to 1 in X. IFF : I x I — X is a lifting of F on X, then F is a path-homotopy.

Proof. Fix a point xg € f~'(yo), and let F : I x I — X be the lifting of F on X with F(0,0) =

Then by Theorem 3.4.16, F is a homotopy of maps from ¥y := F(—,0) to 41 := F(—,1). L
x1 := ¥o(1) = F(1,0). To show F is a path-homotopy, we need to ensure that F(0,t) = xo and
F(1,t) = x1, for all t € I. This follows from the Lemma 3.4.17 applied to the paths t — F(0,t)
and t — F(1,t). O

Corollary 3.4.19. Let f : X — Y be a covering map. Let yo € Y and fix a point xo € f~1(yo). Then
the group homomorphism f, : (X, x9) — 71(Y,yo) induced by f is injective. The image subgroup
fe (m1(X, x0)) in 71 (Y, yo) consists of the homotopy classes of loops in Y based at yo whose lifts to X
starting at x( are loops.

Proof. Let [v],[6] € m (X, x0) be such that f.([y]) = f«([6]). Then f o 7 is homotopic to f o d.
Let F : I x I = Y be a path homotopy from f oy to f 0 4. Then by Theorem 3.4.16 and its Corol-
lary 3.4.18, we can lift F to a path-homotopy F : I x I — X with F(0,0) = xo. By uniqueness of
path-lifting (see Theorem 3.4.12), F must be a path-homotopy from v to & (verify!). Therefore,

f is injective.

To see the second part, note that any element of f (711 (X, xo)) is of the form [f o 7], for some
loop v : I = X in X based at xg. By Theorem 3.4.12 (Path-lifting) we can lift f o 7 to a path m
starting at (0). Then by uniqueness of path-lifting, we have f;y = 7. Conversely, if § is a
loop in Y based at xq such that its lift § in X is a loop in X based at xg, then f.([3]) = [f 03] = [J].
This completes the proof. O
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Exercise 3.4.20 (Lifting of opposite path). Let f : X — Y be a covering map. Lety : I — Y be
a path in Y from yg to y;. Fix a point xg € f~!(yo), and let 7 be the lift of 7 in X starting at xo.
Let 7 be the opposite path of 7. If 7 is the lift of 7 in X starting at (1), then show that § = 7.

Exercise 3.4.21 (Lifting of product of paths). Let f : X — Y be a covering map. Lety,6: 1 =Y
be two paths in Y such that (1) = 6(0). Fix a point xg € f~'(7(0)), and let 7 and 7*(5 be
the liftings of the paths y and y x5, respectlvely, in X starting at xg. If d is the lifting of & in X
starting at x; := 7(1), show that § x 8 = y % v %0.

Lemma 3.4.22. Let f : X — Y be a covering space. If both X and Y are path-connected, then the
cardinality of the fiber f~'(y) is independent of y € Y.

Proof. Fix a point yo € Y, and a point xog € f~'(yo) € X. Let G = m(Y,y9) and H =
f«(m(X,x0)). Let H\G := {Hg : ¢ € G} be the set of all right cosets of H in G. Since
both X and Y are path-connected, the cardinality of the set H\G is independent of choices of
Yo € Yand xg € f~1(yo). Therefore, to show the cardinality of the fibers f~!(y) is independent

of y € Y, it is enough to construct a bijective map
®:H\G — f Hyo). (3.4.23)

Given a loop 7 in Y based at y, let ¥ be the lifting of 7y in X starting at xo. Note that, x; :=
(1) € f~Y(yo). Then we define
®(H[y]) :=7(1). (3.4.24)

We need to show that x; is independent of choice of y. Let J be a loop in Y based at v with
H[vy] = H[6]. Then [y* 4] = [7][6] 7! € H = f.(m1(X, x0)), where § is the opposite path of .

Then by Corollary 3.4.19 the loop 7 * ¢ lifts to a unique loop (’y x6) in X based at xg. Let é be
the lifting of sin X starting at x1 := (1 ) Then by Exercises 3.4.21 we have 7 x (5 = 7% 5 Since
v ¢ is a loop in X based at x, we have B (1) = x¢. Let  be the opposite path of 3 in X. Since

(fom)(t) = f(n(t) = f
5

1 is a lift of § in X starting at 17(0) = E(l) = xg. Then by uniqueness of path-lifting (Theorem
3.4.12) we have 7 = 6. Then (1) = #(1) = 6(0) = x;. Therefore, the map ® in (3.4.24) is
well-defined. Since X is path connected, given any x; € f~!(y), there is a path ¢ in X from
xo to x1. Then f o ¢ is a loop in Y based at yy whose lift f/o\; starting at xg is the unique path
¢ ending at x; = ¢(1). Therefore, ® is surjective. Let [y], [] € 711(Y,y0) = G be such that
®(H[7]) = ®(H|[d]). Let 7 and 4 be the lifts of y and 4, respectively, in X starting at xo. Let 3: be
the opposite path of 4 in X. Since ®(H[y]) = ®(H|[4]), we have (1) = 4(1), and hence 7 % 4 is
aloop in X based at x¢. Since f o (7 * gv) = 704, by uniqueness of path-lifting and Corollary
3.4.19, we conclude that [y x 8] € f.(7m1(X,x0)) = H. Therefore, H[y] = H[6], and hence ® is
injective. Therefore, ® : H\G — f~!(yo) is a bijection. O

Exercise 3.4.25. Give an example to show that the Lemma 3.4.22 fails if X and Y are not path-

connected.
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Theorem 3.4.26 (General Lifting Criterion). Let f : (X, x9) — (Y, yo) be a covering map. Let T be
a path-connected and locally path-connected space. A continuous map g : (T, tg) — (Y, yo) lifts toa
continuous map § : (T, tg) — (X, xo) if and only if g (m1(T, ty)) C fx(m1(X, x0)). Note that, such
a lift g of g, if it exists, is unique by Lemma 3.4.13.

Proof. If g lifts to a continuous map § : (T, tg) — (X, xp) such that fo g = g, then g*(7T1(T, to)) =
fe(§(m(T, t0))) C fi(m1(X, x0))-

To see the converse, suppose that g, (711 (T, o)) C fx(71(X, x0)). Since T is path-connected,
givenapointt; € T, thereisapathy : I — T withy(0) = tpand y(1) =t;. Thengoy: I =Y
is a path in Y from g(ty) = yo to y1 := g(t1) = (goy)(1). Since f : (X, x0) — (Y,yp) is a
covering map, by Theorem 3.4.12 (Path-lifting) the path g o «y lifts to a unique path go7 in X
starting at x(. Define a map

§:T—X (3.4.27)

by sending t; to x; := go (1) € X. To show the map ¢ is independent of choice of a path
in T from t( to t1, note that given any path § : I — T from ¢ to t1, the product path v xJ is a
loop in T based at ty. Since . (711(T, t9)) C f«(m1(X, x0)), by the second part of the Corollary
3.4.19 the loop g o (y*6) = (go ) * (g o d) lifts to a unique loop, say ¢, in X based at x(. Let

(g06) be the lifting of g o ¢ in X starting at x; := go(1). Then by Exercises 3.4.21 we have

—_~—

¢ =(go7)* (go J). Since ¢ is a loop in X based at xp, we have (g0J)(1) = xq. Let ;7 be the
opposite path of (g o). Since

—_~—

(fom)(t) = f((ged)(1—1))

o~
—_~—

and 7(0 ) (g06)(1) = xo,by uniqueness of path-lifting, wehave 7 = (g 0 6). Then (g/_;_(S/)(l) =
71(1) = (g06)(0) = (g 079)(1) = x1. Therefore, the map g in (3.4.27) is well-defined. It follows
from the construction of g that f o ¢ = g. It remains to show that g is continuous. Here we need

to use local path-connectedness of T.

Fix a point t; € T and lety; = ¢(t;) € Y and x1 := g(t1) € f(y1). Since f is a covering
map, there is an open neighbourhood U C Y of y; and an open neighbourhood U C X of x;
such that

flg:U—u (3.4.28)

is a homeomorphism. Since T is locally path-connected and g is continuous, there is a path-
connected neighbourhood V' C T of t; such that g(V) C U. To show ¢ : T — X continuous, it
is enough to show that g(V) C U. Given t’ € V, choose a path a inside V joining t; to /. Then
¥ *a is a path in T joining t( to #/, and its image g o (7 * &) has a lifting, say B, in X starting at x.
Let :=so(goa), wheres : U — U is the inverse of the homeomorphism f | i givenin (3.4.28).
Since (1) = (s o g oa)(0), by uniqueness of path-lifting, f coincides with 4 x (s o g o a). Then

() =pB(1) = (F*(sogoa))(1) = (sogoa)(1) € U. Therefore, §(V) C U, and hence § is
continuous. O



3.4. Covering Space 179

3.4.2 Fundamental group of S!

Now we are in a position to compute fundamental group of the unit circle
Sli={zeC:|z|=1} ={(x,y) e R? : x> +1* = 1}.

Assuming that the reader has forgotten the statement of Theorem 3.4.1 by now, let’s recall it
once again.

Theorem 3.4.1. The fundamental group 7t1(S', 1) of the unit circle S! with the base point 1 € S is
isomorphic to the infinite cyclic group Z. generated by the loop w : I — S! defined by w(t) = ™, for
allt € 1=10,1].

Proof. Lety : I — S! be a loop based at xy = 1 € S'. Since
p:R — S, ts 2

is a covering map (c.f. Example 3.4.6 (i)), there is a unique continuous map % : I — R such that
Y(0) = 0and po7 = 9. Since p~!(y(1)) = Z, the path ¥ ends at some integer, say n. Note
that, we have a path

wy: I — R, s— ns,

starting at 0 and ending at n. Clearly the path % is homotopic to @, by the linear homotopy
F:IxI—TR, (s,£)— (1—=6)%(s) + t@0n(s).

Then the composition po F : I x I — S! is a homotopy from 7 to w;,, where wy, : I — S! is the
loop based at 1 € S! defined by

wp(s) = s /g e [

Therefore, [y] = [wy] in 711(S?, 1).

Define a map
¢:7 — m (S, 1), n [wl.

It follows from the above construction that ¢ is surjective. To show that ¢ is a group homo-
morphism, we need to show that w, x w; >~ wy4y, for all m,n € Z. To see this, consider the
“translation by m” map

Tn :R— R, x+— x+m.

Note that 7, 0 W, is a path in R starting at m and ending at m + 7, and hence the path w;, x
(T 0 @Wy) in R starts at 0 and ends at m + n. Then it follows from the first paragraph that
p o (W * (T © @y)) is homotopic to wy+y,. Since p o (Wy * (T © Wy)) = Wy * wy, we conclude

that ¢ is a group homomorphism.

To show that ¢ is injective, it is enough to show if a loop y : I — S! based at 1 is homotopic
to both w; and wy,, for some m,n € Z, then m = n. Indeed, if v ~ wy, and v ~ wy, then
wm ~ wy by Lemma 324. Let G : I x I — S! be a homotopy from wy, to wy in S'. By
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Theorem 3.4.16 there is a unique continuous map G : I xI — R such that po G = G and
G(0,0) = 0. Then by uniqueness of path lifting (c.f. Theorem 3.4.12) we have é‘ (Ohx1 = wy and
é|{1}x1 = Wy Since {é|{t}><l : I~—> R},  isa }:omotopy of paths, the end points é|{t}><l(1)
are independent of ¢. Thus, m = G|{O}><I(1) = G|{1}><I(1) = n, and hence ¢ is injective. This
completes the proof. O

3.4.3 Fundamental group of 5", forn > 2

In this subsection we show that S” is simply connected, for n > 2. First we need the follow-
ing.
Lemma 3.4.29. Let (X, xo) be a pointed topological space. Let {Uy }yep be an open cover of X such
that

1. each Uy is path-connected,

2. xg € Uy, foralla € A,

3. Uy N Ug is path-connected, for all o, p € A.

Then any loop in X based at xg is homotopic to a finite product of loops each of which is contained in a
single Uy, for finitely many a’s.

Proof. Let v : I — X be a loop based at xy. Since < is continuous, each s € I is contained
in an open neighbourhood V; := (s — s, s + 65) C I of s such that (V) C Uy, for some
xs € A. Since I is compact, we can choose finitely many such open neighbourhoods V;’s to
cover I. Thus we get a finite partition 0 = sp < 53 < -+ < s, = 1 of I = [0, 1] such that
'y([s]',l, sj]) C Uaj, for some a; € A, forall j = 1,...,m. Therefore, the restriction

Vi = ')/}[S : [S]‘,l, S]} — U,X]. cX

j*l/sj}

is a path in U,x],, foreachj = 1,...,m, and that v = 1 % -+ - % ;. Since U]- N Uj+1 is path-

)

o)
=5

U°<I Uo(z

FIGURE 3.11

connected, we may choose a path 7; in Uy; N Uy, from the base point x to the point (s;) €
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Uy; N Uy, ,, for all j (see Figure 3.11). Denote by 77; the opposite path of 77;, for all j (see definition
(3.3.23) in §3.3.3). Then the product loop

(v1%771) * (1 * Y2 * 112) * (2 * Y3 x773) * - -+ % (Hm—1 % Ym) (3.4.30)

is homotopic to -y (see Exercise 3.3.24). Clearly this loop is a composition of the loops y1 * 71,
Hx Y2 %102, 2 % Y3 % 73, - -, fm—1 * Ym based at xq, each lying inside a single U,;, for all j =
1,...,m. This completes the proof. O

Exercise 3.4.31. Fix an integer n > 1.

(i) For any x¢ € S§", show that S” \ {x¢} is homeomorphic to R".

(ii) For a pair of antipodal points x,x; € S", let U; := S"\ {x;}, for j = 1,2. Show that
U; N Uy is homeomorphic to S"~! x R.

Proposition 3.4.32. For an integer n > 2, we have 71 (S") = {1}.

Proof. Fix a pair of antipodal points x1, xp in S”. Then we have two open subsets U; = S" \
{x1} and U = S"\ {x2} each homeomorphic to R". Clearly S" = U; U U, and U; N U, is
homeomorphic to S"~! x R. Then by Exercise 3.4.31 we have U; N U, is homeomorphic to
S§"=1 x R, which is path-connected because n > 2. Fix a base point xog € U; N U,. Let 7y
be a loop in 5" based at xp. Then by Lemma 3.4.29 7 is homotopic to a product of finitely
many loops in 5" based at xy each of which are contained in either Uy or U,. Since both U
and U, are homeomorphic to R" by Exercise 3.4.31, we have m(U;) = m;1(R") = {1}, for
j = 1,2. Therefore, v is homotopic to a finite product of loops based at x( each of which are
null-homotopic, and hence v is null-homotopic. O

Corollary 3.4.33. S" is simply connected, for n > 2.

Exercise 3.4.34. For a point xg € R", show that the space R" \ {x(} is homeomorphic to $" 1 x
R.

Corollary 3.4.35. IR? is not homeomorphic to R", for n # 2.

Proof. If possible let f : R> — R" be a homeomorphism. For n = 1, since R? \ {0} is path-
connected while R\ {f(0)} is disconnected, there is no such homeomorphism in this case.
Suppose that n > 2. In this case, we cannot distinguish R? \ {0} with R" \ {£(0)} in terms of
number of path-components; but we can distinguish them by their fundamental groups.

Since for any point x € R” the space R" \ {x} is homeomorphic to S"~! x R by Exercise
3.4.34, we have

m1(S"1 x R)
m($"1) x m(R)
m(s",

m (R™\ {x})

14

1%

because 711 (R) is trivial. Since 711 (S') 22 Z by Theorem 3.4.1 while 71 (5" 1) = {1}, forn > 2,
by Proposition 3.4.32, such a homeomorphism cannot exists. O
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Remark 3.4.36. A more general result that R is homeomorphic to R" if and only if m = n
can be proved in a similar fashion using higher homotopy groups or homology groups. In
fact, using homology groups one can show that non-empty open subsets of R™ and R" can be
homeomorphic if and only if m = n.

3.4.4 Some applications

Theorem 3.4.37 (Fundamental theorem of algebra). Every non-constant polynomial with coeffi-

cients from C has a root in C.

Proof. Take a non-constant polynomial p(z) € C[z]. Diving p(z) by its leading coefficient, if

required, we may assume that
p(z) =2"+a;z" 1 4+ +a, € Clz).
If p(z) has no roots in C, then for each real number r > 0, the map 7, : I — S' C C defined by

_ (™) /p(r)
Yr(s) := 0(re7) [ p(r)] Vsel, (3.4.38)

is a loop in the unit circle S' := {z € C : |z| = 1} with the base point 1 € C. As r varies, the
collection {7, },>0 defines a homotopy of loops in S! based at 1. Since 7 is the constant loop 1
in S!, we see that the homotopy class [y,] € 1(S!, 1) is trivial, for all » > 0.

Choose any r € R with r > max{1, |a1| + - - - + |a,|}. Then for |z| = r we have
2 =" = 1>l o) 2
> |2 ]
From this inequality, it follows that for each t € [0, 1], the polynomial
pi(z) = 2" + (a2 Fay)

has no roots on the circle |z| = r. Replacing p(z) with p;(z) in the expression of -, in (3.4.38)
and letting ¢ vary from 1 to 0, we get a homotopy from the loop v, to the loop

Wy i I — S 5 2T,

Since the loop wy, represents n times a generator of the infinite cyclic group 7;(S!,1) = Z, and
that [wy] = [7¢] = 0, we must have n = 0. Thus the only polynomials without roots in C are

constants. O

Definition 3.4.39. A deformation retraction of X onto its subspace A is a continuous map F :
X x I = X such that the associated family of continuous maps

{frimFloy : X2 X},
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obtained by restricting F on the slices X x {t} < X X I, for each t € I, satisfies fy = Idx,
f1(X) = A, and f; | 4= Idy4, V t € I. In this case, we say that A is a deformation retract of X.

Example 3.4.40. (i) Let D = {re’® € C:0 <r <1, 0 <6 < 27} be the punctured disk of
radius 1 in the plane C, and let S' = {z € C : |z| = 1} C X be the unit circle. For each
t € I = [0,1], we define a map
ft :D— D

by sending re?® € D to (t+ (1 — t)r)e® € D. Itis easy to verify that {f; }c] is a family of
continuous maps from D into itself, and satisfies fo = Idp, fi(D) = S' and ft’51 = Idg.
Therefore, {f; }cr is a deformation retraction of D onto S.

(if) Let X be the Mobius strip (see Figure 3.12) and A C X be the central simple loop of X.
Then there is a deformation retraction of X onto A.

FIGURE 3.12: Mobius strip

Definition 3.4.41. A retraction of X onto a subspace A C X is a continuous map f : X — X
such that f(X) = A and f|, = Id4. A subspace A C X is said to be a retract of X if there is a
retraction of X onto A.

Note that a retraction f : X — X of X onto a subspace A C X can be characterized by its
property f o f = f, and hence we can think of it as a topological analogue of a projection operator
in algebra.

Lemma 3.4.42. If A C X is a retract of X, for any ag € A the homomorphism of fundamental groups
e : (A, a0) — m (X, a9),
induced by the inclusion map 1 : A — X, is injective.

Proof. Let f : X — X be a retraction of X onto A. Then f o1 = Id4, the identity map of A.
Then by Proposition 3.3.12 and Remark 3.3.13 we have f o1, = Id; (4 qy)- Thus 1, admits a left
inverse, and hence is injective. O

Proposition 3.4.43. If A C X is a deformation retract of X, then X is homotopically equivalent to A
(see Definition 3.2.9).

Proof. Let F: X x I = X be a deformation retract of X onto its subspace A. Since

fo: X=X, x— F(x,0)
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is the identity map Idx : X — X, and
fi: X=X, x—F(x, 1)

is a retraction of X onto A, we conclude that F is a homotopy from Idx to a retraction of X onto
A. Since fj o1 = Id4 and ¢ o f; is homotopic to the identity map of X, we conclude that X and
A are homotopically equivalent. O

Corollary 3.4.44. If A C X is a deformation retract of X, then for any ag € A we have an isomorphism
of fundamental groups 111 (A, ag) = m1(X, agp).

Proof. Follows from Lemma 3.3.16. O

Remark 3.4.45. Note that the constant map X — {xp} C X being continuous, every space X
admits a retraction onto a point of it. However, the next Proposition 3.4.46 and Lemma 3.4.47
produce examples of topological spaces that do not admit any deformation retract onto a point
of it.

Proposition 3.4.46. If there is a deformation retract of X onto a point xo € X, then X is path connected.

Proof. Let F: X x I — X be a deformation retract of X onto a point xg € X. Since for any point
x € X, the continuous map
¢y I — X, t— F(x,t)

is a path joining F(x,0) = x and F(x,1) = x¢, X is path connected. O

Lemma 3.4.47. If A C X is a deformation retract of X, then for any ag € A, the homomorphism
of fundamental groups 1. = 11(A,a9) — 1m1(X,a0) induced by the inclusion map 1 : A — X is an
isomorphism.

Proof. Let F : X x I — X be a deformation retraction of X onto X. Then f; := F|, ay X —
X is a retraction of X onto A. Then by Lemma 3.4.42 the homomorphism ¢, : 711(4,a0) —
m1(X, ap) is injective. To show ¢, is an isomorphism, it enough to show that it is surjective.
Note that, given any loop y : I — X in X based at ag, the composite map

Id
G:IxI1™S xx1-5x

is a path-homotopy from G’IX{O} = 7y toaloop g := G]IX{l} : I — A based at a9. Thus,
1+([g]) = [g] = [7], and hence ¢, is surjective. O

Remark 3.4.48. The notion of deformation retraction of a space X onto a subspace A C X is
a way to continuously deform X onto A in a very strong sense, while the notion of homotopy
equivalence seems to be a weaker notion of being able to deform a space into another space.
However, if two spaces X and Y are homotopically equivalent, then there is a space Z such that
both X and Y are deformation retracts of Z. Such a space Z can be constructed as a mapping
cylinder

My = (X x DUY)/(x1) ~ f(x)

of a homotopy equivalence f : X — Y. We shall not go into details for its proof in this course.
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Exercise 3.4.49. Show that the unit circle S! = {z € C : |z| = 1} do not admit any deformation

retraction onto a point of it.

Exercise 3.4.50. Show that 71 (R?\ {(0,0)}) = Z.

For an integer n > 1, let
= o
D" :={(x1,...,xn) €ER" : Z{xj <1}
]:

be the closed unit disk in R". Its boundary dD" is the unit sphere in R" given by

n

S = {(xy,..., %) €ER" : ijz =1}.

=1
Theorem 3.4.51 (Brouwer’s fixed point theorem). Every continuous map f : D> — D? has a fixed
point.

Proof. Suppose on the contrary that f : D?> — D? has no fixed point, i.e., f(x) # x,V x € D%
Then for each x € D?, the ray in R? starting at f(x) and passing through x hits a unique point,
say r(x) € S!. This defines a map r : D> — S'. Since f is continuous, small perturbations of

T
9])1: ¢t

x produce small perturbations of f(x), and hence small perturbations of the ray starting from
f(x) and passing through x, it follows that the function x — r(x) is continuous. Explicit proof
of continuity could be given by writing down the explicit expression for r(x) in terms of f(x).
Note that r(x) = x, for all x € S!. Therefore, r : D?> — S! is a retraction of D? onto its subspace
S! = 9D?. Then by Lemma 3.4.42 the homomorphism of fundamental groups

s (S (1,0)) — (D%, (1,0))

induced by the inclusion map ¢ : S! < D?, is injective. Since 711 (S', (1,0)) & Z and 7, (D?, (1,0))
is trivial, we get a contradiction. O

Remark 3.4.52. The corresponding statement for Brouwer’s fixed point theorem holds, more
generally, for a closed unit disk D" C R”, for all n > 2. If time permits, we shall give a proof of
it using homology. However, the original proof of it, due to Brouwer, neither uses homology
nor uses homotopy groups, which was not invented at that time. Instead, Brouwer’s proof
uses the notion of degree of maps S” — S”, which could be defined later using homology, but
Brouwer defined it more directly in a geometric way.

Definition 3.4.53. For x = (x1,...,%,+1) € S", we define its antipodal point to be the point
—x:=(=x1,...,—Xu41) € S".
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Theorem 3.4.54 (Borsuk-Ulam). Let n € {1,2}. Then for every continuous map f : S* — R", there
is a pair of antipodal points x and —x in S" with f(x) = f(—x).

Proof. The case n = 1 is easy. Indeed, since the function
g:S1 — R, x— f(x)—f(—x)

changes its sign after the point x € S' moves half way along the circle S', there must be a pint
x € S! such that f(x) = f(—x).

Assume that n = 2. We use the same technique used to compute the fundamental group
of S'. Suppose on the contrary that there is a continuous map f : S> — R? such that f(x) #
f(—x), for all x € S%. Then we can define a map g : S> — R? by

_ SfO) —f=x) reg?
SO = e o VS

where | (y1,y2)| := /2 + y3 is the norm of (y1,2) € R?. Since |g(x)| = 1, the image of the
map ¢ lands inside S! C R?. Note that the map g : S*> — S! is continuous. Define a loop

n:1=1[0,1 — S*by
7(s) = (cos2ms, sin27ms, 0), Vs € 1. (3.4.55)

Then 7 circles around the equator of the sphere S> C R®. Let ki : I — S be the composite map
h:=gomn.

Since g(x) = —g(—x), we have

h(s + %) = —h(s), Vs €[0,1/2]. (3.4.56)

Now consider the covering map
p:R = S!, s e¥ = (cos27ts, sin27s).

Lift the loop h : I — S! to this cover to get a unique path h:1—R starting at 0 € R (see
Theorem 3.4.12). Then it follows from the relation (3.4.56) that

s+ 1) = Ti(s) + 1) (3.457)

for some odd integer q(s) depending on s € [0, 1]. Since /1 is continuous, it follows from the
equation (3.4.57) that the map
I - R, s—q(s),

is continuous on [0, %] Since g is a discrete function taking values in odd integers, we must
have g(s) = g, for some odd integer g, for all s € [0, %] In particular, putting s = 1/2 and 0 in
(3.4.57) we have

h(1) = h(1/2) + g = 1(0) +q.
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This means that the loop / represents g times a generator of 7r1(S'). Since g is an odd integer,
h cannot be null homotopic. But this cannot happen because the loop 7 : I — S? being null-
homotopic, the loop & := goy : I — S?> — S! should be null-homotopic. Thus we get a
contradiction. This completes the proof. O

Remark 3.4.58. (i) Borsuk-Ulam theorem (Theorem 3.4.54) holds for all integer n > 1. A
general proof could be given using homology theory later.

(ii) Theorem 3.4.54 says that there is no one-to-one continuous map from S" into R"”. As a
result, S cannot be homeomorphic to a subspace of IR".

3.5 Galois theory for covering spaces

3.5.1 Universal cover

Since we shall work with paths in X, and a locally path-connected space is connected if
and only if it is path-connected, and path-connected components of X are the same as con-
nected components of X, there is no harm in assuming that X is connected or equivalently
path-connected. Unless explicitly mentioned, in this section, we always assume that X is path-
connected and locally path-connected.

Proposition 3.5.1. Let X be a connected and locally path-connected topological space. Fix a point
xo € X. Let p : (X,%9) — (X, xq) be a simply connected covering. Then for any connected covering
f:(Y,y0) = (X, x0), there is a unique continuous map F : (X, %o) — (Y,yo) such that po F = f.

(X, %)

(X, XO)

Proof. Since X is locally path-connected and X is a simply connected covering of X, X is path-
connected and locally path-connected. Since 711 (X, %p) is trivial and f : (Y, o) — (X, xg) is
a covering map, by general lifting criterion (see Theorem 3.4.26) there is a unique continuous
map F: (X, %) — (Y, yo) such that fo F = p. O

Proposition 3.5.2. Let (X, xg) be a locally path-connected and path-connected topological space. Let
p1: (X1, %1) = (X,x0) and py : (Xa,%3) — (X, xq) be two simply connected covering spaces of
(X, x0). Then there is a unique homeomorphism of pointed topological spaces F : (X1,%1) — (Xp, %2)
such that py o F = p1.

(X1, %) (X3, %2)
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Proof. Follows from Proposition 3.5.1. O

Definition 3.5.3. A simply connected covering space of a path-connected locally path-connected
topological space (X, x¢) is called the universal cover of (X, xg). This name is due to its universal

property (c.f. Proposition 3.5.1) and uniqueness upto a unique homeomorphism (c.f. Proposi-

tion 3.5.2).

It is not yet clear if universal cover of a path-connected locally path-connected topological
space exists or not, however if it exists, it is unique up to a unique homeomorphism of pointed
topological space by Proposition 3.5.2. The following Lemma 3.5.4 gives a necessary condition
on (X, xo) for existence of a universal covering space.

Lemma 3.5.4. Let p : (X, %) — (X, x0) be the universal cover of (X, xg). Then each point x € X
has a path-connected open neighbourhood U C X such that the homomorphism of fundamental groups
e 2 (U, x) — m1(X, x), induced by the inclusion map 1 : U — X, is trivial.

Proof. Fix x € X. Then there is a path-connected open neighbourhood U C X which is evenly
covered by the covering map p. Let U C X be the path-connected open subset such that
p| i’ U — U is a homeomorphism. Let y be a loop in U based at x. Using the homeomorphism
Plg-

connected, we have a path-homotopy F : I x I — X from 7 to the constant loop cy at ¥ in X.

we can lift it to a loop 4 in X based at the point ¥ € U N p~'(x). Since X is simply-

Composing F with p we get a path-homotopy p o F from 7 to the constant loop c, at x in X.
This shows that the homomorphism ¢, : 711 (U, x) — 711(X, x) induced by the inclusion map
t: U = Xis trivial. O

Definition 3.5.5. A path-connected and locally path-connected topological space X is said to
be semi-locally simply connected if each point x € X has a path-connected open neighbourhood
U C X such that the homomorphism of fundamental groups ¢, : 711 (U, x) — 711(X, x), induced
by the inclusion map ¢ : U — X, is trivial.

3.5.2 Construction of universal cover

The following theorem shows that the condition on (X, xg) for existence of its universal
covering space given in Lemma 3.5.4 is, in fact, sufficient.

Theorem 3.5.6. Let X be a path-connected, locally path-connected topological space. Fix a point xg €
X. Then a simply connected covering space of (X, xo) exists if and only if X is semi-locally simply
connected.

Proof. If a simply connected covering space for X exists, then X is semi-locally simply con-
nected by Lemma 3.5.4.

Suppose that X is semi-locally simply connected. We give an explicit construction of a
simply connected covering space of X. Note that, if p : (X, %) — (X, xo) is a simply connected
covering space for (X, xg), then for each ¥ € X, there is a unique path-homotopy class of paths
in X from %) to ¥ (see Corollary 3.3.33). Thus, points of X can be thought of as homotopy classes
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of paths in X starting at ¥y, and hence can be thought of as the homotopy classes of paths in
X starting at xp thanks to the homotopy lifting property. This motivates us to construct the
underlined set of points of X as

X := {[y] : vis a path in X starting at xo},

where [y]| denotes the path-homotopy class of a path y in X. Define

p: X=X (3.5.7)

by sending a [y] € X to the end point (1) € X of ; this map is well-defined because of the
definition of path-homotopy (see Definition 3.3.1). Since X is path-connected, given any x; € X
there is a path y in X with 9(0) = xg and (1) = x;. Then [y] € X with p([7]) = x1. Thus, p
is surjective. If we set ¥y € X to be the path-homotopy class of the constant path cy, : [ — X
given by ¢y, (t) = xo, V t € I, then p(xp) = xo.

It remains to give a suitable topology on X to make p : (X, %y) — (X, x) a simply connected
covering space of (X, xp). Let

% = {V <5 X | V is a path-connected open subset of X such that

the homomorphism ¢, : 711(V) — 711(X) is trivial }.

Note that, if the homomorphism ¢, : 711(V,x) — m1(X,x), induced by the inclusion map
t:V — X, is trivial for some x € V, then it is trivial for all points of V, whenever V is path-
connected. Moreover, if U and V are two path-connected open subsets of X with V C U and
U € %, then it follows from the following commutative diagram

v, U

7'[1(V) 7T1(U)

1 (X)

that V € %, where iy : U — X, 1y : V — Xand 1y : V < U are inclusion maps. Since X is
locally-path-connected, path-connected and semi-locally simply connected, now it follows that
7 is a basis for the topology on X (verify!).

We now use the collection % to construct a collection % of subsets of X which forms a basis
for the desired topology on X. Given U € % and a path 1 in X starting at xo and ending at a

point in U, consider the subset

Up,) := {[y*#y] : nis apathin U starting at y(1)} C X.

Note that, if 7 is path-homotopic to 9’ in X, then (1) = 9/(1), and hence for any path  in U
starting at (1) = 9/(1), we have [y x 7] = [y' x7]. Therefore, the subset U,| C X depends
only on U and the path-homotopy class of ¢ in X.
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Observation 1: The restriction map

%W%ﬁu (3.5.8)

is bijective. Indeed, it is surjective because U is path-connected. To see it is injective, note that
if p([y*n]) = p([y*7']), then (1) = 5'(1) and so the loop 1 x i’ is path-homotopic to the
constant path c, o) inside X, because the homomorphism 1. : 711 (U) — 71(X) is trivial. Then
it follows that [y x 7] = [y % i1’]. Therefore, the restriction of p on U, (see (3.5.8)) is injective,
and hence is bijective.

Observation 2: Given U € % and any two paths ¢ and J in X with y(0) = §(0) = xp and
7(1),0(1) € U, if [6] € U}, then we must have Up,) = Up). Indeed, if [§] € U]}, then
[0] = [y * 1], for some path 7 in U with #(0) = (1). Then for any path a in U with (0) = 4(1),
we have [§xa] = [(y*1n)*a] = [yx(7xa)] € U,). Thus Uy C U},). Conversely, given
any [y xa] € U, we have [y xa] = [y*nx7xa] = [0 (7*a)] € Uy, which shows that
Uy, € Uy, Therefore, we conclude that Uy, = Uy if [6] € U,

Now we use the above two observations to show that the collection
# = {U},: U € % and vy is a path in X with 7(0) = xo and (1) € U}
forms a basis for a topology on X. Note that, X being path-connected, we have X =  |J Upy-
U[,Y]GEOZ

To check the second property for 2 to be a basis for a topology on X, suppose that we are given
two objects U}, Vj5] € % and an element

[a] € U[’Y] N V[(g] (3.5.9)

Now U,V € %, and 7y and ¢ are paths in X with 7(0) = 6(0) = xg and y(1) € U, 6(1) € V. We
claim that
U = Uy and Vg = V. (3.5.10)

Since [¢] € U, N V|5, we have [a] = [y*7y] = [0 x7'], for some paths 17 and 7" in U and
V respectively, with 7(0) = (1) and #'(0) = §(1). Since 7y * 77 is path-homotopic to & x 7/,
both of them have the same end point, and hence a(1) = 7(1) = #/(1) € UNV. Then the
claim in (3.5.10) follows from the Observation 2. Since % is a basis for the topology on X,
and a(1) € UNYV, there is an object W € % such that a(1) € Wand W C UN V. Since
[a] € U[,) N Vs, the argument given in Observation 2 shows that

Wia) © Uje) N Vi) = Uy N Vg,

where the equality of sets on the right side is by (3.5.10). Clearly [a] € W), Therefore, # is a
basis for a topology on X. Give X the topology generated by this basis %.

Now it remains to show that p : X — X in (3.5.7) is a covering map and that X is simply
connected. We first show that, for each UM € 2%, the restriction map

Plu,, : Um = U
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is a homeomorphism. We already have shown that p| u, is bijective. Note that, for any V[:s] €A
ye
with V[/{] C U}, we have p(V[’(S]) = V' C U. Since both % and % are basis for the topologies of
X and X, respectively, this shows that the restriction map p| Uy is open. To show that p| Uy is
ye e

continuous, it suffices to show that for any V € % with V C U, we have p~1(V) N Uy = Viy-
Indeed, for any [¢] € p~ (V)N U], we have a(1) € VNU, and so V) C Uy = U}, by
Observation 2. Since p(V},)) =V, it follows that p L (V)N Uy = Vi)

Since 4 is a basis for the topologies on X, it follows that p~ (V) is openin X, forall V € % .
Since % is a basis for the topology on X, it follows that p : X — X is continuous. Given a point
x € X, choose an object U € % with x € U. We claim that the collection

%y = {U],) : v is a path in X with 7(0) = xp and (1) € U}

is a partition of p~!(U). Since p~}(U) = U Uj,), it suffices to show that objects of the
U[,y] Ecgu

collection ¢}; are either disjoint or identical. If [x] € U, N Ujs), then a is a path in X with
«(0) = xp and a(1) € U, and hence by Observation 2 we have U},; = U, = Ujs. Since the
restriction of p on each of Uy, is a homeomorphism, p : X — X is a covering map.

It remains to show that X is simply connected. Given a point [y] € X and ¢ € I, consider
the map v : I — X defined by

s), if 0<s<t and
Yi(s) = 1) . (3.5.11)
y(t), if t<s<1

Note that, each 1; is a path in X starting at x(, and hence its path-homotopy class is an element
of X. Then the map Py L — X defined by

P () = [1], VEeL

is a path (why it is continuous?) in X starting at Xy = [cy,] € X and ending at [y] € X. There-
fore, X is path-connected. Since p : (X, %y) — (X, xo) is a covering map, the homomorphism
pi @ m(X, %) — (X, %) induced by the map p is injective by Corollary 3.4.19. Therefore,
to show 711(X, %) is trivial it suffices to show that p. (711(5(,550)) is the trivial subgroup of
711(X, xp). By Corollary 3.4.19 elements of p. (711(X, %p)) € m1(X, xo) are given by loops v in
X based at xg whose lift to the cover p : X=X starting at xy is a loop in X based at %. Since
¢|,] is a path in X starting at £y and p o ¢, = 7, we must have [y] = ¢, (1) = X = [cx,]. In
other words, < is path-homotopic to the constant loop ¢y, in X. This completes the proof.  [J

We now go towards establishing Galois correspondence for covering spaces. Whenever
we talk about simply connected covering space of X, we assume that X is semi-locally simply
connected in addition to be it path-connected and locally path-connected.
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3.5.3 Group action and covering map

Before proceeding further, let’s recall some standard terminologies related to group action.
Let G be a group, and let ¢ : G X X — X be a left G-action on X. For notational simplicity, we
denote by g - x the element 0 (g, x) € X, forall (g, x) € G x X. Given x € X, the subset

Stabg(x) :={ge€G:g-x=x} CG

is a subgroup of G, known as the stabilizer of x or the isotropy subgroup for x. The G-action o
is said to be free if Stabg(x) = {e}, for all x € X. This means that, for each x € X, given
31,82 € G, wehave g1 - x = g - x if and only if g1 = g». Note that the G-action ¢ on X defines

an equivalence relation on X; for x € X, its equivalence class is the subset
Orbg(x) :={g-x: g€ G} CX,

called the G-orbit of x in X. The G-action ¢ is said to be transitive if there is exactly one G-orbit
in X. In other words, given any two points x1, xo € X, there exists g € G such that xo = g - x7.

Definition 3.5.12. Let G be a group. A G-action ¢ : G x X — X on X is said to be even (or,
properly discontinuous according to old texts) if the G-action map ¢ is continuous, and each
point xy € X has an open neighbourhood V C X such that (¢- V)NV =@, forallg # ein G,
whereg-V:={g-x:xeV} CX

Remark on old notation: Most of the old texts uses the term properly discontinuous G-action to
mean an even G-action. This terminology is awkward because the G-action on X itself is a

continuous map.

Proposition 3.5.13. If a group G is acting evenly on a path-connected and locally path-connected
topological space Y, then the associated quotient map q : Y — Y /G is a covering map.

Proof. Clearly the quotient map q : Y — Y/G is continuous. Note that, for any subset V C Y

we have
g qv)=UgV, (3.5.14)
geG
where ¢-V = {g-v:v € V} C X, forall g € G. Since the left translation map Lg : ¥ — Y
given by
Le(y)=g-y:=clgy), YyeY

is a homeomorphism, V is open in Y if and only if g - V = L¢(V) is openin Y, for all ¢ € G.
Since ¢ is a quotient map, it follows that q(V') is open in Y/G if V is open in Y. Therefore, g is

an open map.

Toseeq:Y — Y/G is a covering map, let’s fix a point v € Y/G, and a point y € g~ !(0).
Since the G-action on Y is even, i has an open neighbourhood U, C Y such that (g - U,) N U, =
@, for all g # e in G. Take V,, := q(U,). Then it follows that

q_l(Vy) =|]g Uy,
g€eG
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It remains to show that the restriction map

‘7’g.uy g Uy — Vy =q(Uy)

is a homeomorphism, for all ¢ € G. Since g is continuous and open, it suffices to show that

‘7|g-uy is bijective, forall ¢ € G.

If q‘g.uy were not injective, then there exist y1,y, € g - Uy with y; # y, such that q(y;) =
q(y2). Then there exists h € G such thaty, = h-y;. Theny, = h-y; € Uy N (h-U;p) implies
h = e because the G-action on Y is even. This contradicts our assumption that y; # y» = h - y1.
Therefore, g |g~U must be injective. To show g |g~l,[ is surjective, note that a typical element of
Vy = q(Uy) is of the form g(y1), for some y; € U,. Since q(y1) = Orbg(y1) = {a-y1 :a € G},
we see that ¢ - y; € g - Uy satisfies q‘g_u (g-v1) = q(y1). Therefore, q|g_u is surjective. O

Y Y

Proposition 3.5.13 allow us to construct a lot of examples of covering maps.

3.5.4 Group of Deck transformations

Let f : Y — X be a covering map. An automorphism of f : Y — X is a homeomorphisms
¢ Y — Y satisfying f o ¢ = f. The set

Aut(Y/X):={¢p:Y =Y | ¢ isa homeomorphism satisfying fo¢p = f }

of all automorphisms of f : Y — X forms a group with respect to the binary operation on
Aut(Y/X) given by composition of homeomorphisms. The group Aut(Y/X) is also known as
the group of Deck transformations or covering transformations of f : Y — X. Note that, Aut(Y/X)
acts on Y from the left by automorphisms:

a: Aut(Y/X) xY =Y, (¢,y) — ¢(y). (3.5.15)

We shall show in Proposition 3.5.19 that if we equip Aut(Y/X) with discrete topology, then the
action map in (3.5.15) become continuous.

Proposition 3.5.16. Fix a point xg € X, and a path-connected covering space f : Y — X of X. Then
the natural Aut(Y / X)-action on Y restricts to give a free Aut(Y / X)-action on the fiber f~(xq). If Y
is simply connected, then the Aut(Y / X)-action on the fiber f~1(x) is transitive.

Proof. Letyg € f~!(xp) be given. Since ¢ € Aut(Y/X) satisfies f o ¢ = f, we have f(¢(yo)) =
f(yo) = xo, and hence ¢(yo) € f~'(xg). Therefore, the natural Aut(Y /X)-action on Y restricts
to an Aut(Y/X)-action on the fiber f~1(xg). If ¢(yo) = yo, for some ¢ € Aut(Y/X), then by
uniqueness of lifting of maps (see Theorem 3.4.26 or Lemma 3.4.13) we must have ¢ = Idy.
Therefore, the Aut(Y/X)-action on the fiber f~!(xp) is free.

Now assume that Y is simply connected. To show that Aut(Y / X)-action on the fiber f~!(xg)
is transitive, choose two points yo,y1 € f~!(xg). Since X is locally path-connected and f : Y —

X is a covering map, Y is locally path-connected. Since by assumption Y is path-connected and
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locally path-connected (since X is so) with 71 (Y) trivial, by general lifting criterion (Theorem
3.4.26) there is a unique continuous map ¢ : (Y,y0) — (Y,y1) such that f o ¢ = f. Similarly,
there is a unique continuous map ¢ : (Y,y1) — (Y, yo) such that f o = f. Then by uniqueness
of lifting (see Theorem 3.4.26), we must have ¢p o = Id(y ) and o ¢ = Idy . Therefore,
both ¢ and i are homeomorphisms, and that ¢(yy) = y;. Thus, the Aut(Y/X)-action on
f~1(xp) is transitive. O

Let f : Y — X be a covering map. Fix a point xg € X. Since X is locally path-connected,
there is a path-connected open neighbourhood U C X of xo which is evenly covered by f. Then
we can write

flay= || v, (3.5.17)
yef (=)
where V;, C Y is the path-connected open neighbourhood of y € f~!(y) such that f |Vy :

V, — U is a homeomorphism. Note that, {V, : y € f~!(x0)} is precisely the set of all path-
components of f~1(U).

Proposition 3.5.18. With the above notations, Aut(Y / X) acts freely on the set of all path-components
{Vy 1y € f1(x0)} of f~1(U). Moreover, this action is transitive when Y is simply connected.

Proof. Since f : Y — X is a covering map, the restricted map

fll ::f|f*1(ll) :fil(u) —u

is a covering map. Since for any ¢ € Aut(Y/X) we have f o ¢ = f, image of the restriction
map ¢| ) f~H(U) — Y lands inside f~!(U), and hence gives rise to an automorphism of
the covering space f; : f~1(U) — U, i.e., ¢‘f—1(u) € Aut(f~1(U)/U). Clearly ¢ € Aut(Y/X)
takes path-components of f~!(U) to path-components of f~!(U). In particular, for each y €
f~(x0), the induced map

¢ Vy = Vo

is a homeomorphism. Since Aut(Y/X)-action on f~!(xg) is free by Proposition 3.5.16, if for
some y € f~!(xg), the automorphism ¢ € Aut(Y/X) takes V, to itself, then we must have
® = 1dy.

Now assume that Y is simply connected. Since the Aut(Y /X)-action on f~!(xo) is transitive
by Proposition 3.5.16, and the path-components of f~!(U) are uniquely determined by the
conditions that V, N f~1(xo) = {y} and V}, NV,, = @ for y1 # y2 in f1(xp), given any two
path-components Vj,, Vy, of f~1(U), there exists ¢ € Aut(Y/X) such that ¢(y1) = y», and
hence ¢(V,) = Vy,. Thus, the Aut(Y/X)-action on the set of all path-components of f~!(U) is
transitive. O

Proposition 3.5.19. Let f : Y — X be a path-connected covering space of X. Equip Aut(Y /X) with

discrete topology. Then there is a continuous map (action map)

a: Aut(Y/X)xY = Y, (3.5.20)
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such that the following diagram commutes:

Aut(Y/X) x Y ? Y
pr2l J{f (3.5.21)
Y ! X,

where pry : Aut(Y/X) X Y — Y is the projection map onto the second factor.
Proof. Clearly a : Aut(Y/X) x Y — X is defined by

a(,y) = ¢y), V(P y) € Aut(Y/X) x Y,

makes the above diagram commutative. We only need to show that the action map 4 is contin-

uous.

Let

B:={V CY :Vis path-connected, open and
f(V) is evenly covered by f}.

Since Y is path-connected and locally path-connected covering space for X, it is easy to check
that B is a basis for the topology on Y. Therefore, to show the action map a is continuous, it is
enough to show that a=1(V) is open in Aut(Y/X) x Y, forall V € B. Fix V € B. Since V is
path-connected and f : Y — X is a covering map, U := f(V) is path-connected and open in X.
Fix a point xg € U. Since U = f(V) is evenly covered by f, we can write

fﬁl(u> = |_| Vy/
yef(xo)
where V;, C Y is an open neighbourhood of y € f~!(xg) such that f |V : Vy — U is a homeo-
Y
morphism. Since V is path-connected and p(V) = U, we have V C V,, for some yo € f~!(xo).
Since f |Vy : Vy, — U is a homeomorphism, we must have V = V,, for some yo € f!(xp).
0

Therefore, it is enough to show that a~1(V}) is open in Aut(Y/X) x Y, forally € f~!(xp).

Let (¢,y) € a (V) = {(¢,y) € Aut(Y/X) xY : ¢(y') € V,} be arbitrary. Then
¢(y) € Vy,. Since ¢ is an automorphism of Y, there is a unique y; € Y such that ¢(y1) = yo.
Then ¢ : V,,, — V), is a homeomorphism. Since ¢(y) € V,, we must have y € V;,. Then
{¢} x V,, is an open neighbourhood of (¢, y) in Aut(Y/X) x Y such that a({¢} x V) C Vy,.
Therefore, a1 (V) is open in Aut(Y/X) x Y. This completes the proof. O

Corollary 3.5.22. If f : Y — X is a connected cover of X, the action of Aut(Y/X) onY is even (see
Definition 3.5.12).
Proof. Follows from Proposition 3.5.19 and 3.5.18. O

Proposition 3.5.23. Ifa group G acts evenly on a connected topological space Y, then the automorphism
group Aut(Y /X)) of the covering map q : Y — X := Y /G is naturally isomorphic to G.
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Proof. Let 0 : G XY — Y be the left G-action which is even. Since ¢ is continuous, for each
g € G, the induced map

g Y =Y, y—g-y:=0(gvy)

is a homeomorphism of Y onto itself. Since the quotient map q: Y — X := Y/G sends a point
y € Y toits G-orbit Orbg(y) € Y/G, it follows that (0 (y)) = q(y), for all ¢ € G. Therefore,
0y € Aut(Y/X). Thus we have a natural map

®:G — Aut(Y/X), g 0. (3.5.24)

Note that, for any g,/ € G we have

oan(y) = (gh) -y =g (h-y) =0og(on(y)), Yy €Y.

Therefore, ® is a group homomorphism. Since the G-action on Y is even (see Definition 3.5.12),
it follows that Ker(®) is trivial, and hence ® is injective. Let ¢ € Aut(Y/X) be arbitrary. Fix
apinty € Y, and let x := q(y) € X. Since ¢(y) € g '(x) = Orbg(y), we have ¢(y) = g-y =
0¢(y), for some ¢ € G. Since both ¢,0, € Aut(Y/X) and they agree at a point of Y and Y
is connected, by uniqueness of lifting (see Lemma 3.4.13) we have ¢ = 0;. Therefore, ® is
surjective, and hence is an isomorphism. O

3.5.5 Galois covers

Let f : Y — X be a path-connected covering space of X. Then the natural left Aut(Y/X)-
action on Y gives rise to an equivalence relation on Y, where the equivalence classes are Aut(Y/ X)-
orbits of points of Y. Given y € Y, its Aut(Y'/X)-orbit is the subset

Orbaue(y/x)(y) = {9(y) : ¢ € Aut(Y/X)} C Y.

Fixyo € Y, and let xo = f(yo). Clearly, Orb(y,x)(v0) C f ~!(xp), and equality holds if and
only if the Aut(Y/X)-action on the fiber f~1(xq) is transitive. By the universal property of

quotient space, there is a unique continuous map
f:Y/ Aut(Y/X) = X (3.5.25)

such that the following diagram commutes:

Y X

_ 7
\ o (3.5.26)
q - 3f

Y/ Aut(Y/X)

where g : Y — Y/ Aut(Y/X) is the quotient map.

Definition 3.5.27 (Galois cover). A covering map f : Y — X is said to be a Galois cover of X if
Y is path-connected and the continuous map f: Y/ Aut(Y/X) — X in (3.5.25), induced by f,
is a homeomorphism (see the diagram (3.5.26)).
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Proposition 3.5.28. A connected covering map p : Y — X is Galois if and only if Aut(Y/X) acts
transitively on each fiber of the covering map p.

Proof. Suppose that p : Y — X is Galois cover. Consider the commutative diagram.

Y P X

Y/ Aut(Y/X)

Since the induced map p : Y/ Aut(Y/X) — X is a homeomorphism (by definition), for each
x € X, the fiber p~1(x) coincides with the Aut(Y/X)-orbit of a point of the fiber p~!(x). In
other words, the Aut(Y/X)-action on each of the fibers of p is transitive.

Conversely, if the Aut(Y/X)-action on each of the fibers of p is transitive, then the induced
continuous map p : Y/ Aut(Y/X) — X is bijective. Therefore, to show that p : Y — X a Galois
cover, it suffices to show that p is an open map. Let U C Y/ Aut(Y/X) be an open subset.
Since the quotient map g : Y — Y/ Aut(Y/X) is continuous, 4 (U) is open in Y. Since the
covering map p : Y — Xis an open map, p (q’l (U)) is open in X. Since g is surjective, we have
q(g~1(U)) = U. Since p = p o g, we have

Therefore, p(U) is open in X. This completes the proof. O

If Y is simply connected, as remarked above, the Aut(Y / X)-orbit of yj is precisely the fiber
f~(xg), for all yg € f~1(xg). Therefore, in that case, the map f is bijective. This leads to the

following.

Corollary 3.5.29. A simply-connected covering map p : X — X is Galois cover.

Proof. X being simply connected, Aut(X/X) acts transitively on each fiber of p by Proposition
3.5.18. Therefore, the result follows from Proposition 3.5.28. O

Remark 3.5.30. If p : Y — X is a covering map with Y connected, then to show p : Y — X is
a Galois cover it suffices to show that Aut(Y/X) acts transitively on one fibre. Indeed, since in
this case Y/ Aut(Y/X ) is a connected cover of X where one of the fibres is singleton, it follows
that p : Y/ Aut(Y/X) — X is a homeomorphism.

3.5.6 Galois correspondence for covering spaces

Theorem 3.5.31. Let p : Y — X be a Galois cover. For each subgroup H of the Galois group G :=
Aut(Y/X), the projection map p induces a natural continuous map py : Y/H — X which is a
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covering map. Conversely, if f : Z — X is a connected cover of X fitting into a commutative diagram

4

N

X

Y Z

then ¢ : Y — Z is a Galois cover and Z is homeomorphic to Y/H. The maps H — Y /H and
Z — Aut(Y/Z) induces a natural one-to-one correspondence between the collection of subgroups of G
and the intermediate covers of p 1 Y — X as above. Moreover, the cover f : Z :=Y /H — X is Galois
if and only if H is a normal subgroup of G; and in this case we have Aut(Z/X) = G/H.

[Need to be added! ] O

3.5.7 Monodromy action

[[Need to be added]]

3.6 Homology

3.6.1 Simplicial Complex
3.6.2 Homology group
3.6.3 Homology group for surfaces

3.6.4 Applications

3.7 Cohomology
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Chapter 4

Appendix

4.1 Category Theory

Definition 4.1.1. A category ¢ consists of the following data:

(i) a collection of objects ob(¢),

(ii) for each ordered pair of objects (X, Y) of ob(%), there is a collection Mor4 (X, Y), whose
members are called arrows or morphisms from X to Y in ¢; an object ¢ € Mory(X,Y) is
usually denoted by an arrow ¢ : X — Y.

(iii) for each ordered triple (X, Y, Z) of objects of ¢, there is a map (called composition map)
o:Morg(X,Y) x Morg(Y,Z) — Morg(X,Z), (f,g) — gof,

such that the following conditions hold.
(a) Associativity: Given X,Y,Z,W € ob(%), and f € Mory(X,Y), g € Morg(Y,Z) and
h € Mory(Z,W),wehaveho (go f) = (hog)o f.

(b) Existence of identity: For each X € ob(%’), there exists a morphism Idx € Mor (X, X)
such that given any objects Y, Z € ob(%¢’) and morphism f : Y — Z we have foldy =

fandIdzof = f.
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