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LIE ALGEBROID CONNECTIONS ON PRINCIPAL BUNDLES

SAMIT GHOSH* AND ARJUN PAUL†

ABSTRACT. Let X be an irreducible smooth complex projective variety. Let G be a lin-
ear algebraic group over C. We define the notion of Lie algebroid valued connection
on holomorphic principal G–bundles on X, and study their basic properties under ex-
tension and reduction of structure group. Finally we investigate criterions for existence
of a Lie algebroid connection on principal G–bundles over smooth complex projective
curves.
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1. INTRODUCTION

A famous theorem of A. Weil [Wei38] says that a holomorphic vector bundle E
on a compact connected Riemann surface X admits a holomorphic connection if and
only if each indecomposible holomorphic direct summand of E has degree zero. In
[Ati57] M. Atiyah generalizes the notion of holomorphic connections in the context of
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holomorphic principal G–bundles on compact Kähler manifolds, and gives an algebro-
geometric proof and Weils’ theorem for holomorphic vector bundles on compact con-
nected Riemann surfaces. In [AB02] Azad and Biswas generalize Weils theorem for
holomorphic principal G–bundles on compact connected Riemann surfaces. It is clear
from these results that not every holomorphic vector bundles and principal G–bundles
can admit holomorphic connections. This naturally leads one to consider the notion of
meromorphic connections. One of the simplest kind of meromorphic connections is
the notion of logarithmic connection, which are treated for holomorphic vector bun-
dles and holomorphic principal G–bundles, for example in [BDP18], [BDPS17], [GP20]
etc.

In the context of complex algebraic and differential geometry, the classical notion
of holomorphic as-well-as singular connections has natural generalization by replacing
tangent bundle with a Lie algebroid leading to the notion of Lie algebroid connections,
which is more convenient to work in some setups like Poisson geometry, foliation the-
ory etc. The notion of Lie algebroid connections also generalize the notion of holomor-
phic and logarithmic connections. It is an interesting problem to study Lie algebroid
connections on holomorphic vector bundles and principal bundles.

Let X be a connected compact Riemann surface. Fix a holomorphic Lie algebroid
V = (V, [· , ·], φ) on X with V a stable vector bundle. In [BKS24] the authors shows that
every holomorphic vector bundle on X admits a V–valued Lie algebroid connection
generalizing a result [AO24, Corollary 3.17] of Alfaya and Oliveire. In this paper we
generalize the notion of V–valued Lie algebroid connections in the context of principal
G–bundles (see Definition 2.2.7), study their properties under extension and reduction
of the structure group of the principal bundles (see § 3), and prove the following.

Theorem 1.0.1. Let X be an irreducible smooth complex projective curve of genus g ≥ 2. Fix a
Lie algebroid V = (V, [· , ·], φ) on X such that V is a stable vector bundle on X with the slope
µ(V) ̸= 2 − 2g. Let G be a reductive linear algebraic group over C. Then any holomorphic
principal G–bundle EG on X admits a V–valued Lie algebroid connection.

This generalize the main result of [BKS24] to the case of holomorphic principal
G–bundles on X.

2. LIE ALGEBROID CONNECTIONS

2.1. The case of vector bundles. Let X be an irreducible smooth projective variety
over C. Let OX be the sheaf of holomorphic functions on X, and let TX be the holo-
morphic tangent bundle of X.

Definition 2.1.1. [AO24, § 1.1] A Lie algebroid on X is a triple V := (V, [·, ·], φ), where

(i) V is a holomorphic vector bundle on X,
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(ii) [·, ·] : V × V → V is a C–bilinear skew-symmetric morphism of sheaves such that
for all locally defined sections u, v, w of V, the following Jacobi identity holds:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0;

(iii) φ : V → TX is a vector bundle homomorphism satisfying the following proper-
ties: for all locally defined sections s, t of V and locally defined section f of OX,
we have

(a) Compatibility of Lie algebra structures: φ([s, t]) = [φ(s), φ(t)], and

(b) Leibniz rule: [ f s, t] = f [s, t]− φ(t)( f )s.

The homomorphism φ is called the anchor map of the Lie algebroid V . The degree and
the rank of V is defined to be the degree and the rank, respectively, of the underlying
vector bundle V of V .

The dual of the anchor map gives a holomorphic vector bundle homomorphism

φ∗ : Ω1
X −→ V∗,

where Ω1
X is the holomorphic cotangent bundle of X. Fix a Lie algebroid V := (V, [·, ·], φ)

on X. Let E be a holomorphic vector bundle on X.

Definition 2.1.2. A V–valued Lie algebroid connection on E on X is a C–linear homomor-
phism of sheaves

D : E −→ E ⊗ V∗

satisfying the φ∗–twisted Leibniz rule:

D( f · s) = f D(s) + s ⊗ φ∗(d f ), (2.1.3)

for all locally defined section s of E and for all locally defined section f of OX.

2.2. The case of principal G–bundles. Now we extend the definition of Lie algebroid
connection to the case of principal bundles following a construction given in [BP17].
Let G be a linear algebraic group over C with the Lie algebra g := Lie(G). Let p : EG →
X be a holomorphic principal G–bundle on X. The adjoint representation

ad : G −→ GL(g)

of G on its Lie algebra g gives rise to a vector bundle

ad(EG) := EG ×ad g

on X, called the adjoint vector bundle of EG. If E is the frame bundle of a vector bundle
E of rank n on X, then we have ad(E) ∼= End(E), the endomorphism bundle of E . The
surjective submersion p : EG → X gives rise to an exact sequence of vector bundles

0 // ad(EG) // At(EG)
d′p
// TX // 0 (2.2.1)

called the Atiyah exact sequence of EG. A connection on the principal G–bundle EG on
X is an OX–linear homomorphism ∇ : TX → At(EG) such that d′p ◦ ∇ = IdTX.
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Fix a Lie algebroid V = (V, [· , ·], φ) on X, and consider the map

ρ : At(EG)⊕ V −→ TX

defined by

ρ(ξ, v) = d′p(ξ)− φ(v), (2.2.2)

for all locally defined section ξ of At(EG) and locally defined section v of V. Note that
ρ is a vector bundle homomorphism and

Atφ(EG) := ρ−1(0) (2.2.3)

is a vector bundle on X. The restriction of the second projection map gives rise to a
vector bundle homomorphism

ρ̃ : Atφ(EG) −→ V (2.2.4)

with kernel

Ker(ρ̃) = ad(EG).

Thus we have the following short exact sequence

0 −→ ad(EG) −→ Atφ(EG)
ρ̃−→ V −→ 0 (2.2.5)

of vector bundles on X, which fits into the following commutative diagram

0 // ad(EG) // Atφ(EG)
ρ̃
//

��

V //

φ

��

0

0 // ad(EG) // At(EG)
d′p
// TX // 0

(2.2.6)

of vector bundle homomorphisms with all rows exact.

Definition 2.2.7. A V–valued Lie algebroid connection on EG is a vector bundle homo-
morphism

∇ : V −→ Atφ(EG)

such that ρ̃ ◦ ∇ = IdV , where ρ̃ is defined in (2.2.4).

The short exact sequence (2.2.5) defines a cohomology class

ΦV (EG) ∈ H1(X, ad(EG)⊗ V∗), (2.2.8)

such that the exact sequence (2.2.5) splits holomorphically if and only if ΦV (EG) = 0.

Proposition 2.2.9. A holomorphic principal G–bundle EG on X admits a V–valued holomor-
phic Lie algebroid connection if and only if ΦV (EG) = 0. We call ΦV (EG) the V–valued
Atiyah class of EG.
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Let ∇ : V → Atφ(EG) be a V–valued Lie algebroid connection on EG over X. For
all locally defined holomorphic sections s and t of V, let

κ∇(s, t) := [∇(s),∇(t)]−∇([s, t]).

Since the homomorphism ρ̃ : Atφ(EG) → V respects the Lie algebra structures on the
sheaves of sections, κ∇(s, t) defines a holomorphic local section of ad(EG). Thus we
obtain a section

κ∇ ∈ H0(X, ad(EG)⊗
∧2

V∗),
called the curvature of the V–valued Lie algebroid connection ∇ on EG. The section κ∇
can be considered as an obstruction for ∇ to be a Lie algebra homomorphism.

Definition 2.2.10. A V–valued Lie algebroid connection ∇ on a principal G–bundle EG
on X is said to be flat if κ∇ = 0.

Proposition 2.2.11. If rank(V) = 1, any V–valued Lie algebroid connection on EG is flat.

Proof. If rank(V) = 1, then
∧2 V∗ = 0 and so for any V–valued connection ∇ on EG,

its curvature κ∇, being an element of H0(X, ad(EG)⊗
∧2 V∗) = 0, vanishes identically.

This completes the proof. □

3. BASIC PROPERTIES

3.1. Extension of structure groups. Let G and H be linear algebraic groups over C

with their Lie algebras g and h, respectively. Given a homomorphism of algebraic
groups f : G → H over C, let d f : g → h be the Lie algebra homomorphism induced
by f . Let p : EG → X be a holomorphic principal G–bundle over X, and let

p′ : EH := EG × f H → X

be the associated principal H–bundle on X obtained by extending the structure group
of EG along f . Let

ad( f ) : ad(EG) −→ ad(EH)

and At( f ) : At(EG) −→ At(EH)

be the homomorphisms of the adjoint bundles and the Atiyah bundles of EG and EH,
respectively, induced by f . Then we have the following commutative diagram of vec-
tor bundle homomorphisms

0 // ad(EG)

ad( f )
��

ιG // At(EG)

At( f )
��

d′p
// TX // 0

0 // ad(EH)
ιH // At(EH)

d′p′
// TX // 0 .

(3.1.1)

It is clear from the above diagram that a holomorphic connection on EG induces a
holomorphic connection on EH := EG × f H. Let

ρ′ : At(EH)⊕ V → TX
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be the homomorphism defined by

ρ′(ξ, v) = d′p′(ξ)− φ(v),

for all locally defined sections ξ of At(EH) and v of V, respectively. Let

ρ̃′ : Atφ(EH) := Ker(ρ′) −→ V

be the restriction of the second projection map. Then we have a vector bundle homo-
morphism

Atφ( f ) : Atφ(EG) −→ Atφ(EH)

such that ρ̃′ ◦ Atφ( f ) = ρ̃. Thus, the above commutative diagram (3.1.1) induces the
following commutative diagram of vector bundles and homomorphisms

0 // ad(EG)

ad( f )
��

// Atφ(EG)

Atφ( f )
��

ρ̃
// V // 0

0 // ad(EH) // Atφ(EH)
ρ̃′
// V // 0 .

(3.1.2)

From this, we have a natural homomorphism of cohomologies

H1( f ) : H1(X, ad(EG)⊗ V∗) −→ H1(X, ad(EH)⊗ V∗) (3.1.3)

such that H1( f )(ΦV (EG)) = ΦV (EH). As an immediate consequence of it, we have the
following result.

Proposition 3.1.4. Let f : G → H be a homomorphism of linear algebraic groups over C. Let
EG be a holomorphic principal G–bundle on X, and let EH be the holomorphic principal H–
bundle on X obtained from EG by extension of its structure group along f . Then any V–valued
Lie algebroid connection on EG induces a V–valued Lie algebroid connection on EH.

Proof. If EG admits a V–valued Lie algebroid connection, then ΦV (EG) = 0. Since
ΦV (EH) = H1( f )(ΦV (EG)) = 0, the result follows from Proposition 2.2.9 □

3.2. Reduction of structure group. Now it is interesting to ask the following question:
Suppose that f : G → H be a homomorphism of linear algebraic groups over C. If EH
admits a V–valued connection, does EG admits a V–valued connection? We give partial
answers to this question.

Proposition 3.2.1. Let f : G → H be an injective homomorphism of linear algebraic groups
over C with G reductive. Let EG be a principal G–bundle on X, and let

EH = EG × f H

be the principal H–bundle on X obtained by extending the structure group of EG along the
homomorphism f . If EH admits a V–valued Lie algebroid connection, then EG admits a V–
valued Lie algebroid connection.
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Proof. Let g := Lie(G) and h := Lie(H) be the Lie algebras of G and H, respectively.
Let d f : g → h be the Lie algebra homomorphism induced by f , and let

ad( f ) : ad(EG) −→ ad(EH)

be the vector bundle homomorphism induced by d f . Let α : G → End(g) and β : H →
End(h) be the adjoint actions of G and H, respectively, on their Lie algebras. Then the
composite map

β ◦ f : G → End(h)

gives an adjoint action of G on h. Since d f is a G–module homomorphism and G is
reductive, there is a G–submodule W of h such that

h = d f (g)
⊕

W (3.2.2)

as G–modules. Since d f is injective, from the direct sum decomposition of G–modules
in (3.2.2) projecting to the first factor we get a G–module homomorphism πg : h → g

such that πg ◦ d f = Idg. Then πg induces a vector bundle homomorphism

π̃g : ad(EH) −→ ad(EG) (3.2.3)

such that π̃g ◦ ad( f ) = Idad(EG)
.

Suppose that EH admits a V–valued Lie algebroid connection. Then there exists a
OX–module homomorphism

η : Atφ(EH) → ad(EH)

such that η ◦ ιH = Idad(EH), where ιH : ad(EH) → Atφ(EH) is the homomorphism in
(3.1.1). Then it follows from the commutativity of the diagram (3.1.1) that the compo-
sition

π̃g ◦ η ◦ At( f ) : Atφ(EG) → ad(EG)

gives an OX–linear splitting of the top exact sequence in (3.1.1). Thus EG admits a
V–valued Lie algebroid connection. □

Now we consider the case when the structure group of a principal bundle is not
reductive. Let G be a reductive linear algebraic group over C. A closed subgroup P of
G is said to be parabolic if G/P is a complete C–variety. Let P be a parbolic subgroup of
G. Let Ru(P) be the unipotent radical of P, and let

q : P −→ P/Ru(P)

be the associated quotient map. Let L ⊆ P be a Levi factor of P; a closed connected
subgroup of P such that q

∣∣
L : L → P/Ru(P) is an isomorphism of algebraic groups

over C. Note that L is reductive. Given a principal P–bundle EP on X, let EL := EP ×q′ L
be the principal L–bundle on X obtained by extending the structure group of EP along
the homomorphism

q′ := (q
∣∣

L)
−1 ◦ q : P → L.

The action of P on the nilpotent radical n := Lie(Ru(P)) of the Lie algebra p := Lie(P)
gives rise to a subbundle EP(n) := EP ×P n of the adjoint bundle ad(EP) of EP, and the
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associated quotient bundle ad(EP)/EP(n) ∼= EP(l) = ad(EL), where l = Lie(L) is the
Lie algebra of L. Then we have the following commutative diagram of vector bundle
homomorphisms with all rows and columns exact (c.f. (3.1.2)):

0

��

0

��
EP(n)

��

EP(n)

��
0 // ad(EP) //

ad(q′)
��

Atφ(EP)

At(q′)
��

ρ̃P // V // 0

0 // ad(EL)

��

// Atφ(EL)

��

ρ̃L // V // 0

0 0

(3.2.4)

Suppose that EL admits a V–valued Lie algebroid connection ∇ : V → Atφ(EL). Then
ρ̃L ◦ ∇ = IdV . Then the subsheaf

E∇ := At(q′)−1 (∇(V)) ⊆ Atφ(EP)

fits into the following short exact sequence of OX–modules

0 → EP(n) → E∇ → V → 0 (3.2.5)

on X whose splitting gives rise to a V–valued connection on EP. Note that the above
short exact sequence (3.2.5) defines a cohomology class

Φ(EP, L,∇) ∈ H1(X, EP(n)⊗ V∗), (3.2.6)

which vanishes if and only if the exact sequence in (3.2.5) splits OX–linearly. From this,
we have the following result.

Proposition 3.2.7. With the above notations, if H1(X, EP(n) ⊗ V∗) = 0, then a V–valued
Lie algebroid connection on EL gives rise to a V–valued Lie algebroid connection on EP.

4. EXISTENCE OF LIE ALGEBROID CONNECTIONS

In this section we assume that X is an irreducible smooth complex projective curve
of genus g ≥ 2. The degree of a coherent sheaf of OX–modules E on X is defined by

deg(E) :=
∫

X
c1(E) ∈ Z,

where c1(E) stands for the first Chern class of E. The rational number

µ(E) :=
deg(E)
rank(E)

is called the slope of E.
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Definition 4.0.1. A vector bundle E on X is said to be stable (resp., semistable) if for any
non-zero proper subsheaf F of E we have µ(F) < µ(E) (resp., µ(F) ≤ µ(E)).

The notion of slope semistablity and stability has a natural generalization to the
case of principal G–bundles on X. Let G be a reductive linear algebraic group over
C. If a principal G–bundle EG on X admits a holomorphic reduction EP ⊆ EG of its
structure group to a parabolic subgroup P ⊆ G, for any character χ : P → Gm of P, we
get a holomorphic line bundle

χ∗EP := EP ×χ Ga

on X.

Definition 4.0.2. [Ram96, Ram75] A principal G–bundle EG on X is said to be semistable
(resp., stable) if for any reduction EP ⊆ EG of the structure group of EG to a proper
parabolic subgroup P ⊆ G, and any nontrivial dominant character χ : P → Gm, we
have deg(χ∗EP) ≤ 0(resp., < 0).

Fix a Lie algebroid V = (V, [·, ·], φ) on X such that the underlying vector bundle V
of V is stable. Let

µ(V) :=
deg(V)

rank(V)

be the slope of the underlying vector bundle V of the Lie algebroid V . Note that TX is
a line bundle on X with the slope µ(TX) = 2 − 2g.

If µ(V) > 2 − 2g = µ(TX), then both V and TX being stable vector bundles on X
we have H0(X, Hom(V, TX)) = 0 (see [HL10, Proposition 1.2.7]), and hence φ = 0 in
this case. Then a V–valued Lie algebroid connection on EG is just a global section of
ad(EG)⊗ V∗; so we may take the zero section in H0(X, ad(EG)⊗ V∗), in particular.

If µ(V) = 2 − 2g = µ(TX), then any non-zero OX–module homomorphism φ :
V → TX is an isomorphism (see [HL10, Proposition 1.2.7]). Then we may replace V
with TX so that a V–valued Lie algebroid connection on EG is nothing but a holomor-
phic connection on EG. This case is studied in detail in [AB02].

Now we assume that µ(V) < 2 − 2g = µ(TX). Then we have the following.

Proposition 4.0.3. Let G be a reductive linear algebraic group over C. With the above as-
sumptions on V , any semistable principal G–bundle EG on X admits a V–valued Lie algebroid
connection.

Proof. Let ΦV (EG) ∈ H1(X, ad(EG)⊗V∗) be the V–valued Atiyah class of EG. By Serre
duality, we have

H1(X, ad(EG)⊗ V∗) ∼= H0(X, ad(EG)
∗ ⊗ V ⊗ KX)

∗,

where KX = Ω1
X is the canonical line bundle on X. Since EG is semistable by assump-

tion, its adjoint bundle ad(EG) is semistable by [AB01, Proposition 2.10]. Then the
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tensor product bundle ad(EG)
∗ ⊗ V ⊗ KX is semistable (see [HL10, Theorem 3.1.4]).

Since G is reductive, the adjoint bundle ad(EG) is isomorphic to its dual, and hence
deg(ad(EG)) = 0. Then we have

µ(ad(EG)
∗ ⊗ V ⊗ KX) = µ(KX) + µ(V) = 2g − 2 + µ(V) < 0.

Then by [HL10, Proposition 1.2.7] H0(X, ad(EG)
∗⊗V ⊗KX) = 0, and hence ΦV (EG) =

0. Hence the result follows. □

Theorem 4.0.4. Fix a Lie algebroid V = (V, [· , ·], φ) on X such that V is stable with µ(V) <
2 − 2g = deg(TX). Let G be a reductive linear algebraic group over C. Let EG be a principal
G–bundle on X. Then EG admits a V–valued Lie algebroid connection.

Proof. Let EG be a principal G–bundle on X. Since G is reductive, by [AAB02, Theo-
rem 1] EG admits a canonical reduction EP ⊆ EG of its structure group to a parabolic
subgroup P ⊆ G such that the associated principal L–bundle

EL := EP ×q L

obtained by extension of the structure group of EP by the quotient homomorphism

q : P −→ P/Ru(P) ∼= L,

is semistable; here L is the Levi factor of P, a closed connected reductive subgroup of
P such that the restriction of the quotient homomorphism q : P → P/Ru(P) to L ⊆ P
is an isomorphism of algebraic groups over C. Then by Proposition 4.0.3 the principal
L–bundle EL admits a V–valued Lie algebroid connection. Since µmin(EP(n)) ≥ 0 by
[AAB02] and V ⊗KX is semistable with µ(V ⊗KX) < 0, it follows that Hom(EP(n), V ⊗
KX) = 0, and hence H1(X, EP(n)⊗ V∗) = 0 by Serre duality. Then by Proposition 3.2.7
that EP admits a V–valued Lie algebroid connection, and then by Proposition 3.1.4 EG
admits a V–valued Lie algebroid connection. This completes the proof. □

ACKNOWLEDGMENT

The first named author is supported by the National Board of Higher Mathematics
(NBHM) through the Doctoral Research Fellowship Program. The second named au-
thor is partially supported by the DST INSPIRE Faculty Fellowship (Research Grant
No.: DST/INSPIRE/04/2020/000649, IFA20-MA-144), the Ministry of Science & Tech-
nology, Government of India.

REFERENCES

[AAB02] Boudjemaa Anchouche, Hassan Azad, and Indranil Biswas. Harder-Narasimhan reduction
for principal bundles over a compact Kähler manifold. Math. Ann., 323(4):693–712, 2002.
doi:10.1007/s002080200322. [↑ 10.]

[AB01] Boudjemaa Anchouche and Indranil Biswas. Einstein-Hermitian connections on polystable
principal bundles over a compact Kähler manifold. Amer. J. Math., 123(2):207–228, 2001. URL
http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/
123.2anchouche.pdf. [↑ 9.]

https://doi.org/10.1007/s002080200322
http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.2anchouche.pdf
http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.2anchouche.pdf


ON LIE ALGEBROID CONNECTIONS 11

[AB02] Hassan Azad and Indranil Biswas. On holomorphic principal bundles over a com-
pact Riemann surface admitting a flat connection. Math. Ann., 322(2):333–346, 2002.
doi:10.1007/s002080100273. [↑ 2 and 9.]
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