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1. Criterion for semistability of a system of Hodge bundles

Let X be a polarized smooth projective variety of dimension d > 1 over an algebraically closed field k. We refer [1] for
definitions related to Higgs bundles and system of Hodge bundles. Then we have the following.

Theorem 1.1 ([1, Theorem 3.1]). Assume that deg(fz)}) > 0. Let (E, 0) be a Higgs bundle on X which admits a structure of
a system of Hodge bundles E = @LO E;. Suppose that, 0|g: E; — Ei_1 ® .Q)} is an isomorphism of Ox—modules, for all
ie{1,...,n}. IfE; is semistable, for all i € {1, ..., n}, then (E, 0) is a semistable Higgs bundle.

The mistake in the proof of [1, Theorem 3.1] is that the inequality (3.10) in that proof holds only for d = 1. However,
for d > 1, the corrected inequality is rk(F;) < d - rk(Fi—1), for all i = 1, ..., r. But then our earlier method of using
Chebyshev’s inequality is not applicable there. This necessitates us to use the following inequality to give a corrected
proof of [1, Theorem 3.1].

Lemma 1.2. Let £ and d be positive integers. Then for a finite sequence of real numbers ro, 11, ..., 1, Withrj < d - 1j_4, for
allj=1,...,¢ we have
¢ ¢ ¢ ¢
(=) () = (o) (0
i=0 j=0 i=0 j=0
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Proof. This can be proved by induction. Let P, := Y"1, d' Zf:o jrjand Q; = Y"1 id' Zf:o rj. Clearly for £ = 1, P; < Q.
So assume that £ > 2, and P,_; < Qy_1. Now we have

-1 -1
Py =Py_1+ d‘Z Z]r] + ng Zdl + Kdlr[,
j=0 i=0
and
=1 -1
Q = Q1 + £d* er +r1 Zid‘ + edbry.
j=0 i=0

Therefore, it is enough to show that

-1 -1 -1 -1
Ay jr4er Yy d<ed Y 4y id. (1.1)
j=0 i=0 j=0 i=0

Since d'r, < d'r;, for all i, we have
ed'ry = id'ry + (€ — i)d'ry < id're + (€ — i)d"r;
= td'r, +id'r; < id'r, + €d'r; (1.2)

Now summing up the inequality (1.2) from i = O to ¢, we get (1.1). This completes the proof. O

Proof of Theorem 1.1. Since E; = Ep ® (£2,)%, for all i € {0, 1, ..., n}, we have,

deg(E;) =i-d ' deg(£2))- rk(Eo) + d' - deg(E)., (1.3)
and

tk(E) = d' - tk(Ep), Vi=0,...,n. (1.4)
The above two equalities (1.3) and (1.4) give

W(E) = djj(;;) - é - deg(2)) + u(Eo). Yi=0,....n. (15)

Now for any integer k € {0, 1, ..., n}, by (1.3) and (1.4) we have,
ko i ko i
2 < k ) = Yo deg(E;) <d6g(9>})rk(50)zz‘:o i-d~" + deg(Eo) X o dl)
] =

S, Tk(E:) rk(Ep) YK, di
 deg(2})- Y yi-d!
- Yiod

It follows from (1.6) and [1, Lemma 3.3] that

k
M(@E,)SM(E), Vk=0,...,n. (1.7)
i=0

Suppose on the contrary that (E, 8) is not semistable. Let F be the unique maximal semistable proper Higgs subsheaf
of (E, 6) with
w(F) > w(E). (1.8)

It follows from [2, Lemma 2.4] that F admits a structure of system of Hodge bundle; in particular, F = @?:o F;, with
FF=FNE,foralli=0,1,...,n.
Since 6|, is an isomorphism, we have

D

i=0

+ u(Eo). (1.6)

FXOF)CF.1®@8), vi=0,1,...,n. (1.9)
Therefore, F; # 0 implies F;_; # 0, forall 1 < i < n.Letr € {0,...,n} be the largest integer such that F. # 0. Then
F = @®,_, Fi. Now from (1.9), we have

rk(F;)) <d-rk(Fi—1), Vi=1,...,r. (1.10)
Since F; # 0 and E; is semistable by assumption, using (1.5), for eachi =0, 1, ..., r, we have
i

deg(F;) < rk(F;) - u(E;) = rk(F) (d

deg(£2) + M(Eo)) : (1.11)
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Then using (1.11), we have

" deg(F; 1 i
u(F) = le‘;((;)g( ) F)Zrkm)(' -deg(rle)w(ﬁo))

i rk(F:). (1.12)

Since deg(.Q)}) > 0, using (1.6) and (1.10), it follows from (1.12) and Lemma 1.2 that
r
WF) < <€B E,~> < u(E). O
i=0

Remark 1.1. In the proof of [ 1, Theorem 3.8], we have referred the same calculation as in proof of [ 1, Theorem 3.1], which
is not correct because of the same mistake (Chebyshev’s inequality is not applicable there). However, this can easily be
fixed by using above Lemma 1.2 as in the proof of Theorem 1.1.
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