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Abstract. Let X be a compact connected Riemann surface of genus g, with g ≥
2, and let G be a connected semisimple affine algebraic group defined over C. Given
any δ ∈ π1(G), we prove that the moduli space of semistable principal G–bundles
over X of topological type δ is simply connected. More generally, if G is a connected
reductive complex affine algebraic group, then the fundamental group of the moduli space
is isomorphic to Z2gd, where d is the complex dimension of the center of G. In contrast,
the fundamental group of the moduli stack of principal G–bundles over X of topological
type δ is shown to be isomorphic to H1(X, π1(G)), when G is semisimple. We also
compute the fundamental group of the moduli stack of principal G–bundles when G is
reductive.
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1. Introduction

Let X be an irreducible smooth complex projective curve, or, equivalently, a com-
pact connected Riemann surface. Let G be a connected reductive affine algebraic group
defined over C. The topological types of holomorphic principal G–bundles over X are
parametrized by π1(G) (see [BLS, p. 186, Proposition 1.3(a)], [Ho, Section 5]). For any
δ ∈ π1(G), let Mδ

G denote the moduli space of semistable principal G–bundles over X of
topological type δ. These moduli spaces have been extensively studied for the last twenty
years. Our aim here is to compute the fundamental group of Mδ

G.

When genus(X) = 0, then Mδ
G is a point; this follows from the facts that any holomor-

phic principal G–bundle over CP1 admits a reduction of structure group to a maximal
torus of G [Gr, p. 122, Théorème 1.1], and the holomorphic line bundles on CP1 are clas-
sified by their degree. When genus(X) = 1, there are explicit descriptions of Mδ

G [FMW],
[FM], [La]. So we assume that g := genus(X) > 1.

There is a short exact sequence of groups

1 −→ [G, G] −→ G
q−→ Q := G /[G, G] ∼= (Gm)d −→ 1 ,

where d is the dimension of the center of G. Let

JαQ(X) ∼= Pic0(X)d

be the moduli space of all holomorphic principal Q–bundles on X of topological type
α = q∗(δ). The above homomorphism q induces a morphism of moduli spaces

q̃ : Mδ
G −→ JαQ(X)

which is in fact an étale locally trivial fibration (see the proof of Corollary 4.5). We prove
the following (see Corollary 4.5).

Theorem 1.1. The homomorphism of fundamental groups

q̃∗ : π1(Mδ
G) −→ π1(JαQ(X)) ∼= Z2gd

induced by the above projection q̃ is an isomorphism.

Theorem 1.1 actually extends to the more general case of any connected complex affine
algebraic group (see Remark 4.6).

Theorem 1.1 has the following immediate consequence:

Corollary 1.2. For a semisimple G the moduli space Mδ
G is simply connected.

We note that Theorem 1.1 was proved earlier in [BLR] under the assumption that
δ = 1. The method of [BLR] does not extend when δ is nontrivial; the crucial Lemma
2.4 in [BLR] fails to extend (also Corollary 2.2 in [BLR] does not extend).

The proof of Theorem 1.1 uses uniformization theorems [BLS, DS, KNR], for moduli
stack of bundles and unirationality of Mδ

G for a semi-simple group G. For example, if
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we take G = SL(r) and δ be an integer coprime to r, then it is well known that the
corresponding moduli space is a projective, smooth, unirational Fano variety [BL, BLS,
KNR] and hence simply connected [Ser, Kol]. However the varieties Mδ

G for general G
and δ are not always smooth and hence we need to use different methods to address these
issues.

We first consider, the fundamental group of the moduli stackMδ
G (see Sections 3.1 for

a definition) of principal G–bundles over X of topological type δ. We prove the following
(see Theorem 2.10):

Theorem 1.3. For a semisimple G the fundamental group π1(Mδ
G) is isomorphic to

H1(X, π1(G)).

It should be mentioned that more generally, when G is reductive, the fundamental
group of the moduli stack of principal G–bundles over X is computed in Corollary 2.11.
As an example if we take G = PGL(r), then for any δ, the fundamental group of the
moduli stack is (Z/rZ)2g, where as the corresponding moduli space is simply connected.

To give a rough reason why π1(Mδ
G) vanishes for G semisimple, first consider the action

of the group H1(X, π1(G)) on any twisted moduli space (see Sections 3.1 and 3.7 for

definitions) of semistable principal G̃–bundles on X, where G̃ denotes the universal cover
of G. This action has the property that the subgroup of H1(X, π1(G)) generated by
all the isotropy subgroups is H1(X, π1(G)) itself. As a consequence of a general result
of [Am], this makes the corresponding quotient by H1(X, π1(G)), of the twisted moduli
space under consideration, a simply connected space, because the twisted moduli space
is simply connected. Finally, the quotient by H1(X, π1(G)) of a twisted moduli space of

semistable principal G̃–bundles is isomorphic to the moduli space Mδ
G, where δ ∈ π1(G)

is the element used in the construction of the twisted moduli space under consideration.

We now give an application of Theorem 1.1. If Y is a proper variety over an algebraically
closed field, there is an isomorphism

Hom(πét1 (Y ), Z/nZ)
∼=−→ H1

ét(Y, Z/nZ)

for any n. From the long exact sequence of cohomologies associated to the short exact
sequence of groups

0 −→ Z/nZ −→ Gm
z 7→zn−→ Gm −→ 0,

it follows that H1
ét(Y, Z/nZ) is isomorphic to the n-torsion part

H1
ét(Y, Gm)[n] .

Consequently, using a generalization of Hilbert Theorem 90 ([Mi, p. 124, Proposition 4.9]),
it follows that

Hom(πét1 (Y ), Z/nZ) ' Pic(Y )[n] .

Now setting Y = Mδ
G, where G is connected semisimple affine algebraic group over C,

the following corollary of Theorem 1.1 is obtained.

Corollary 1.4. For a connected semisimple affine algebraic group G over C the Picard
group of Mδ

G is torsion-free.
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If G is simply connected, the Picard group of MG is known to be Z [KNR]. A result
of [BLS] says that the Picard group of Mδ

G is torsion-free if G is a classical semisimple
group.

2. Uniformization and fundamental group of the moduli stack

Let G be a connected, reductive affine algebraic group defined over C. Let X be an
irreducible smooth complex projective curve. The moduli stack of principal G-bundles on
X will be denoted by MG. It is well known that the stack MG is algebraic [LM].

2.1. Uniformization. Let G be a connected, semi-simple affine algebraic group defined
over C. We now recall the uniformization theorem that describes MG as a quotient of
the affine Grassmannian [BL], [Fa], [KNR]. Let LG denote the loop group viewed as an
ind–scheme over C; we note that the set of C–points of LG is just G(C((t))). The group
of positive loops (respectively, the C-valued points of the groups of positive loops) will be
denoted by L+G (respectively, G(C[[t]])). The quotient

QG := LG /L+G (2.1)

is the affine Grassmannian. The universal cover of G will be denoted by G̃. The kernel

of the projection map G̃ −→ G is isomorphic to the fundamental group π1(G).

Fix a point p ∈ X. Let LXG denote the ind-sub group of LG whose set of C-valued
points is

G(OX(∗p)) = G(OX\{p}) ⊂ G(C((t))) .

The first part of the following result is standard and can be found in ([KNR], [BL], [Fa]),
while the second part is proved in [DS].

Proposition 2.1. There is a canonical isomorphism between the stacksMG and LXG\QG.
Moreover, the quotient map QG −→ MG is locally trivial in the étale topology.

We now recall some well known results on the objects described above; see Lemma 1.2
in [BLS, p. 185].

Proposition 2.2 ([BLS]). Let X be an irreducible smooth complex projective curve and
G a connected semisimple complex affine algebraic group. Then the following four hold:

(1) π0(LG) = π1(G).
(2) The quotient morphism LG −→ QG induces a bijection π0(LG) −→ π0(QG).

Each connected component of QG is isomorphic to QG̃ (defined as in (2.1) by

substituting G̃ in place of G). As before, G̃ denotes the simply connected cover of
G.

(3) The group π0(LXG) is canonically isomorphic to H1(X, π1(G)), i.e.

π0(LXG) ∼= H1(X, π1(G)).

Further via the universal coefficients theorem in cohomology, we get

H1(X; π1(G)) ∼= Hom(H1(X, Z), π1(G)) = Hom(Z2g, π1(G)) ∼= (π1(G))2g.

(4) The group LXG is contained in the neutral component (LG)0 of LG.



FUNDAMENTAL GROUPS OF MODULI OF PRINCIPAL BUNDLES 5

By Proposition 2.2 (cf. [BLS, p. 186, Proposition 1.3]), the set of connected components
π0(MG) has a canonical bijection with the fundamental group π1(G).

Definition 2.3. For any δ ∈ π1(G), let Mδ
G denote the connected component of MG

corresponding to δ. The component of LG(C) corresponding to δ ∈ π1(G) will be denoted
by LGδ(C).

Let ζ be any element in the component LGδ(C). By Proposition 2.2(2), we get an action
of ζ−1 LXG ζ on QG̃. We now recall the uniformization theorem for each componentMδ

G

[BLS, Proposition 1.3(b)]. The second statement of the following proposition is derived
from [DS].

Proposition 2.4. For each δ ∈ π1(G), let ζ be any element in the component LGδ(C)
(see Definition 2.3). There is a canonical isomorphism of stacks

Mδ
G ' (ζ−1 LXG ζ)\QG̃ .

Moreover the quotient map π : QG̃ −→ Mδ
G is locally trivial in the étale topology.

2.2. Fundamental Groups. The quotient C–space QG in (2.1) as constructed in the
works of Beauville-Laszlo, Kumar and Laszlo-Sorger, [BL], [Ku], [LS], is an ind–scheme,
which is a direct limit of a sequence of projective schemes. It turns out that when G is
simply connected, the ind–scheme QG is both reduced and irreducible, hence it is integral
[LS, p. 508, Proposition 4.6], [BL, p. 406–407, Lemma 6.3]. The affine Grassmannian
QG = LG /L+ G can be realized as an inductive limit of reduced projective Schubert
varieties [Ku], [Ma].

Remark 2.5. We do not need to assume that G is semisimple for defining LG. The same
definition works for any reductive group G.

We now recall a lemma (Lemma 2.6) whose proof can be found in Section 8 of [PS] for
G = GLn. The general case follows from more general results in Section 4 of [Na]. We
also refer the reader to Theorem 1.6.1 and the paragraph after Theorem 1.6.1 in [Zhu] for
a more comprehensive discussion.

Lemma 2.6. The affine Grassmannian QG is homotopic to the based loop group Ωe(KG),
where KG is a compact form of G.

The following lemma is a direct consequence of Lemma 2.6.

Lemma 2.7. Assume that G is semisimple and simply-connected. Then π1(QG) is trivial.

2.2.1. Topological Stacks. We refer the reader to papers of Behrang Noohi [No1, No2, No3]
for the notion of topological stacks and its associated homotopy theory. Topological
stacks are defined in Section 13.2 in [No1] and homotopy groups of topological stacks are
discussed in Section 17 in [No1]. We also refer the reader to Section 5.1 in [No3] for more
discussion of higher homotopy groups.

In [No1, Section 20], the author constructs a functor that takes an algebraic stack over
C to a topological stack (see Proposition 20.2 in [No1]). Moreover this functor has nice
properties — it sends smooth morphisms to local fibrations and étale morphisms to local
homeomorphisms. The stacksMδ

G are all algebraic (admitting locally finite presentation
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over C) and hence in particular topological. Moreover, the affine Grassmannian QG̃ has
a natural topology coming from its ind-variety structure. We refer the reader to Section
3.5 for a proof of the following proposition.

Proposition 2.8. The natural morphism π : QG̃ −→ Mδ
G in Proposition 2.4 gives a

morphism between the corresponding topological stacks.

The long exact sequence in homotopy associated to a “Serre fibration” of topological
stacks can be found in Section 5.2 in [No3]. We also refer the reader to Section 4.2 in [No3]
for discussions on quotient stacks. Throughout this paper, we consider the fundamental
group of an algebraic stack to be the fundamental group of the associated topological
stack. The following lemma is due to Behrang Noohi.

Lemma 2.9. Let X be a filtered topological stack with filtration given by {Xi}i∈N and
X = ∪i∈IXi, then π1(X) = limπ1(Xi).

Proof. We shall use the notion of the classifying space f : X ′ −→ X for any topological
stack [No2]. This X ′ is a topological space, and f is a (representable) morphism with
the property that the base extension fT of f , along any morphism T −→ X with T a
topological space T , is a weak equivalence of topological spaces. We refer the reader to
[No2] for all these notions and the existence of such a topological space X ′.

So we choose one classifying space, and let {X ′i}i∈N be the filtration induced on X ′ via
pull back. Since each X ′i −→ Xi is a weak equivalence, the result now reduces to the
same statement of the lemma for topological spaces. �

Theorem 2.10. Assume the group G to be a semisimple affine algebraic group but not
necessarily simply connected. For any δ ∈ π1(G), there is a natural isomorphism

π1(Mδ
G) ∼= π0(LXG) ∼= H1(X, π1(G)).

Proof. Consider the quotient map π in Proposition 2.4. By the Proposition 2.8, this
induces a map between the underlying topological stacks. Since this fibration is locally
trivial with respect to the étale topology, we have a long exact sequence of homotopy
groups

π1(QG̃) −→ π1(Mδ
G)

η−→ π0(ζ−1 LXG ζ) −→ π0(QG̃) −→ 0 . (2.2)

associated to the Serre-fibration π (see Theorem 5.2 in [No3]). Now, from Lemma 2.7
it follows that the homomorphism η in (2.2) is injective, and from Proposition 2.2 we
conclude that η is surjective. Consequently, the homomorphism η is an isomorphism.

Since LXG and ζ−1 LXG ζ are conjugate (by ζ), it follows that the two sets π0(ζ−1 LXG ζ)
and π0(LXG) are bijective. Now the theorem follows from Proposition 2.2. �

A consequence of Theorem 2.10 is the following corollary on the fundamental group of
the moduli stacks of principal bundles with a reductive group as a structure group.

Corollary 2.11. Let G be a reductive complex affine algebraic group, and let Mδ
G denote

a component of the moduli stack of principal G–bundles on the smooth complex projective
curve X, where δ ∈ π1(G). Then the fundamental group π1(Mδ

G) is a subgroup of the
(abelian) group H1(X, π1(G/Z(G)))×H1(X, π1(G /[G, G])) such that the quotient group(

H1(X, π1(G/Z(G)))×H1(X, π1(G /[G, G]))
)
/π1(Mδ

G)
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is H1(X, Z([G, G])), where Z([G, G]) is the center of [G, G].

Proof. Let Z(G) denote the center of G, and let [G, G] be the commutator subgroup of
G. Consider the natural group homomorphism

f : G −→ (G /Z(G))× (G /[G, G]) .

It is easy to see that the kernel K of f is Z(G)
⋂

[G, G] which also coincides with the
center Z([G, G]). Now, since [G, G] is semisimple, we conclude that K = kernel(f) is a
finite group. The corresponding morphism of moduli stacks

Mf : Mδ
G −→ M

δ1
G/Z(G) ×M

δ2
G / [G,G]

is an étale Galois cover with Galois group H1(X, K); here Mδ
G denotes a particular

component of the moduli stack MG, while δ1 and δ2 are the images of δ in π1(G/Z(G))
and π1(G / [G, G]) respectively under the quotient maps. Hence from the long exact
sequence of homotopy groups associated to the above fibration Mf we see that π1(Mδ

G)

injects into π1(Mδ1
G/Z(G))× π1(Mδ1

G /[G,G]) with quotient H1(X, Z([G, G])).

Since G/Z(G) is semisimple, Theorem 2.10 says that

π1(Mδ1
G/Z(G)) = H1(X, π1(G/Z(G))) .

On the other hand, since G /[G, G] is a product of copies of the multiplicative group Gm,
it follows that

π1(Mδ1
G / [ G,G]) = H1(X, π1(G /[G, G])) .

This completes the proof. �

The following consequence of Corollary 2.11 was observed by an anonymous referee and
we thank him for his comment.

Corollary 2.12. The rank (as an abelian group) of π1(Mδ
G) is 2gd, where d = dim Z(G).

In particular the fundamental groups of the moduli space Mδ
G (see Theorem 1.1) and that

of the moduli stack Mδ
G differ only on their torsion parts.

Proof. The result follows from the following short exact sequence obtained from Corol-
lary 2.11, the additivity of rank in such sequences and the vanishing of the ranks of
H1(X; π1(Ad(G))) and H1(X; Z([G, G])). We have

0 −→ π1(Mδ
G) −→ H1(X; π1(Ad(G)))⊕H1(X; π1(Gd

m)) −→ H1(X; Z([G, G])) −→ 0.

Here Ad(G) = G /Z(G) denotes the adjoint group of G. �

3. Twisted moduli stack and fundamental group of its smooth locus

In this section, we compute fundamental group of some twisted moduli stacks. We

consider moduli stacks of certain reductive group CAG̃ associated to a central subgroup

A of G̃. The idea to consider moduli stacks for these groups CAG̃ comes from the work
of Beauville-Laszlo-Sorger [BLS].
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3.1. Fundamental group of the twisted moduli stack. As before, let G̃ be a semi-
simple and simply connected affine complex algebraic group. Given a subgroup A of the

center of G̃, define

G := G̃/A .

Take any δ ∈ π1(G). We shall now recall from [BLS] the construction of a “twisted”
moduli stack Mδ

G̃
dominating Mδ

G.

For any positive integer n, the group of n-th roots of unity will be denoted by µn. We
identify µn with Z/nZ using the generator exp(2π

√
−1/n) of µn. Fix an isomorphism

A '
s∏
j=1

µnj . (3.1)

Since
∏s

j=1 µnj is canonically a subgroup of T := (Gm)s, the isomorphism in (3.1) iden-

tifies A with a subgroup of T . Next we identify the quotient Gm/µn with Gm via the
endomorphism z 7−→ zn of Gm. Using these, the quotient T/A gets identified with T .
Let

CA(G̃) = (G̃× T )/A (3.2)

be the quotient by the diagonal subgroup A. The projection to the second factor

CA(G̃) −→ (G̃/A)× (T/A) = G×(T/A) −→ T/A = T

induces a morphism of the moduli stacks

det : MCA(G̃) −→ MT . (3.3)

Now, since G̃ is simply connected, there is an isomorphism

ρ : π1(G) ∼= A .

Take any ~d = (d1, . . . , ds) ∈ Zs (see (3.1)) such that 0 ≤ di < ni for all 1 ≤ i ≤ s.
We set

δ := ρ−1(exp(2π
√
−1(−d1/n1)), . . . , exp(2π

√
−1(−ds/ns))) . (3.4)

Let

Mδ
G̃,A

:= det−1((OX(d1p), . . . , OX(dsp))) ⊂ MCAG̃ (3.5)

be the sub-stack, where δ and ~d = (d1, . . . , ds) are related by (3.4). Following [BLS,

Section 2], we shall call the stack Mδ
G̃,A

the twisted moduli stack parametrizing CA(G̃)–

bundles with “determinant” (OX(d1p), . . . , OX(dsp)).

It should be mentioned that the twisted principal (CAG̃)–bundles, described above, can
be realized as parahoric G–torsors on X [BS], [He]. So Mδ

G̃,A
is also a moduli stack of

parahoric G–torsors.

Remark 3.1. In [BLS],Mδ
G̃,A

is defined for arbitrary semi-simple groups (not necessarily

simply connected) and is denoted by Md
G̃,A

. The notation Mδ
G̃,A

is used in [BLS] for an

open and closed substack of Mδ
G̃,A

. It was observed [BLS] that for simply connected

groups these two substacks coincide.
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The natural projection CA(G̃) −→ G̃/A = G induces a surjective morphism of stacks

Mδ
G̃,A
−→ Mδ

G .

We now recall from [BLS, Proposition 1.3 and Example 2.4], [BS] and [He] the uniformiza-
tion theorem for twisted moduli stacks.

Proposition 3.2. Let A denote a subgroup of the center Z(G̃) of G̃, and consider the group

G = G̃/A. Let ζ be any element of LGδ(C). Then there is a canonical isomorphism

Mδ
G̃,A
' (ζ−1(LX G̃)ζ)\QG̃ ,

and moreover the natural fibration π : QG̃ −→ Mδ
G̃,A

is locally trivial in the étale

topology.

Remark 3.3. In the statement of Proposition 3.2, note that ζ is an element of LGδ. We

explain the notation of conjugation by ζ in LX G̃. Consider the short exact sequence

0 −→ T/A −→ CA(G̃) −→ G̃/A −→ 0 ,

where G = G̃/A. Moreover T/A is in the center of CA(G̃). Any two lifts of ζ to LCA(G̃)

will differ by a central element. Consequently, conjugation in LCA(G̃) by any lift of ζ is
independent of the lift.

Proof of Proposition 3.2. We just sketch the main step to reduce to the untwisted case.

First observe that G̃ is the kernel of the natural homomorphism CAG̃ −→ T . Now by
construction,

Mδ
G̃,A

= det−1((OX(d1p), . . . , OX(dsp))) ,

where δ and (d1, . . . , ds) are related by (3.4). Observe that (OX(d1p), . . . , OX(dsp))

restricted to X\{p} is just (OX\{p}, . . . , OX\{p}). Thus any principal CA(G̃)–bundle
with determinant (OX(d1p), . . . , OX(dsp)) restricted to the punctured curve X\{p}, is

a principal G̃–bundle on X\{p}. This construction is clearly functorial, in the sense

that if a scheme S parametrizes a family of CA(G̃)–bundles on X with determinant
(OX(d1p), . . . , OX(dsp)), then the restriction of the family to (X\{p})×S gives a family

of principal G̃–bundles on X\{p} parametrized by S.

Now the proof follows as in the untwisted case by using [DS] and the proof of Proposition
1.3 in [BLS] (see also Remark 3.6 in [BL]), but we outline the key steps for completeness.

First consider the natural homomorphism CA(G̃) −→ T which in turn gives a homo-

morphism of the corresponding loop groups det : LCA(G̃) −→ L T. Let us consider

the ind-subscheme of LCA(G̃) given by L G̃
δ

:= det−1(z−d1 , . . . , z−ds). The discussion
in the above paragraph and the uniformization theorem [DS] together give the following
isomorphism of stacks:

Mδ
G̃,A
' LX G̃\L G̃

δ
/L+ G̃ .

Let ζ be any element of L Gδ(C). Take any lift ζ̃ of ζ in L G̃
δ
. Observe that multiplication

by ζ̃−1 gives an isomorphism of L G̃
δ

with L G̃. Hence the result on uniformization follows.
Local triviality follows directly from [DS]. �
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Recall that G̃ is simply connected, and G = G̃/A, where A is a subgroup of the center

of G̃ isomorphic to π1(G). Now as in Section 2.2.1, we apply the homotopy exact sequence
to the above Serre-fibration π, to get the following:

Corollary 3.4. For any δ ∈ π1(G), the above moduli stack Mδ
G̃,A

is simply connected.

Proof. Since G̃ is simply connected, it follows from Proposition 2.2 that π0(ζ−1(LX G̃)ζ)
is trivial. Hence the above mentioned homotopy exact sequence gives that

π1(Mδ
G̃,A

) ' π0(ζ−1(LX G̃)ζ) = {1} .

This completes the proof. �

3.2. Notation. Let G be a connected semisimple complex affine algebraic group, and let

G̃ be its universal cover. For a central subgroup A of G̃ isomorphic to π1(G), henceforth
we drop the subscript A and denote by Mδ

G̃
the twisted moduli stack Mδ

G̃, A
.

3.3. Fundamental group of the regularly stable locus. Henceforth, we assume that
genus(X) = g ≥ 2. Take an element δ of the center of a simple and simply connected

group G̃. If g = 2, then in this section, we assume that either G 6= SL(2,C) or δ 6= 1.

We shall recall the definition of a regularly stable principal bundle [BLS], [BH1]; for
this we need the definition of a stable principal bundle which we also recall below [Ra1].

Definition 3.5. Let H be a connected reductive affine algebraic group over C. A principal
H–bundle EH on X is said to be semistable (respectively, stable) if for any given reduction
EP ⊂ EH of the structure group of EH to any proper parabolic subgroup P ( H (not
necessarily maximal), and any nontrivial dominant character χ : P −→ Gm which is
trivial on the center of H, we have degree(χ∗EP ) ≤ 0 (respectively, degree(χ∗EP ) < 0),
where χ∗EP = EP ×χ Ga is the line bundle on X associated to the principal P–bundle
EP for the character χ.

It is known that a principal H–bundle EH is semistable (respectively, stable) if and
only if for any maximal parabolic subgroup P ( H, and any section s of the projection
EH/P −→ X, we have degree(s∗Trel) ≥ 0 (respectively, degree(s∗Trel) > 0), where Trel

is the relative tangent bundle for the above projection EH/P −→ X [Ra1, Lemma 2.1].

A principal H–bundle E on X is called regularly stable if

• E is stable, and
• the natural homomorphism from the center of H to Aut(E), given by the action

of H on E, is an isomorphism.

As before,Mδ
G̃

denotes the twisted moduli stack associated to the triple (X, G, δ) (see

Section 3.2). Let

Mδ,rs

G̃
⊂ Mδ

G̃

be the open sub-stack defined by the regularly stable locus. Then there are the following
natural inclusions

Mδ,rs

G̃
⊂ Mδ,s

G̃
⊆ Mδ,ss

G̃
⊂ Mδ

G̃
, (3.6)

where the Mδ,s

G̃
(respectively, Mδ,ss

G̃
) denotes the open sub-stack of Mδ

G̃
given by the

stable (respectively, semistable) locus.
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3.4. Presentation as quotient stacks. In this section, we recall following [Ra2], a

presentation of Mδ,ss

G̃
as a quotient stack. We closely follow and recall the constructions

given in the proof of Lemma 7.3 in [BLS] (see also Proposition 3.4 in [KN]). As mentioned
before, it is assumed that g(X) ≥ 2.

Let G be any semisimple group. Choose a faithful representation ρ : G −→ SLr. For
any principal G-bundle P , let ρ∗(P ) := Pρ = P ×ρ Cr be the vector bundle associated to
P for the representation ρ.

Fix a closed point p on the curve X. For any integer n sufficiently large, we have
H1(X, Pρ(np)) = 0 for all all semistable principal G-bundles P . Indeed, this follows
from semicontinuity of cohomology and boundedness of semistable principal G-bundles.
Take n to be sufficiently large. Set m(n) = r(n + 1 − g), and consider the functor

parametrizing locally free quotients E of O⊕m(n)
X of rank r and degree rn. This is clearly

representable [Ra2] by a scheme R(n) along with a universal family E . Moreover R(n)
is smooth for for all n sufficiently large. By [Ra2, Sections 4.8. 4.13.3], we get a scheme
RG(n) that represents the functor of global sections of the fiber bundle E/G on X×R(n)
which is equivalent to the functor parametrizing principal G–bundles P whose associated

vector bundle Pρ(np) is a locally free quotient of O⊕m(n)
X . By the discussion in the proof

of Lemma 4.13.3 in [Ra2] we get that RG(n) is smooth for n large enough and supports
an universal family of principal G-bundles. Moreover the group Γn = GL(m(n)) acts on
RG(n) and R(n) and the morphism RG(n) −→ R(n) is Γn equivariant.

Now assume as before that G̃ is simply connected and A =
∏s

j=1 µnj ⊂ T is a cen-

tral subgroup of G̃ such that G̃/A = G. The group CAG̃ = (G̃ × T )/A is reductive;

we first embed CAG̃ into a reductive group S =
∏s

i=1 GLNi ×T/A such that the center

of CAG̃ goes to the center of S (see the proof of Lemma 7.3 in [BLS] for the construc-
tion of S). Now as before we have a map det : MS → MZ(S), where Z(S) is the
center of S. For any element d′ = (d′1, . . . , d

′
2s) ∈ Z2s and a closed point p, consider

the element (OX(d′1p), . . . ,OX(d′2sp)) of MZ(S). We denote by Md′
S the closed sub-stack

det−1(OX(d′1p), . . . ,OX(d′2sp)). In particular, we have the diagram

MCAG̃
//MS

Mδ
G̃

OO

//Md′
S

OO (3.7)

Here δ and d′ are related by the map between the centers of CAG̃ and S and equation
(3.4). Since Ramanathan’s construction works for arbitrary reductive group, the above
construction goes through with the role of SLr being replaced by S. Thus we get a scheme

RCA(G̃)(n) along with a universal family of principal CA(G̃)-bundles. The projection

CA G̃ −→ T/A ' T induces a map

det : RCAG̃(n) −→ MT ,

where T := Gs
m. Fixing ~d and δ related by equation (3.4), we define the scheme Rδ

G̃
(n) =

det−1(OX(d1p), · · · , OX(dsp)). Similarly we also define the scheme Rd′
S . Since RCAG̃(n)
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is smooth for n large enough, and the morphism det is smooth, this implies that Rδ
G̃

(n)
is also smooth.

For a faithful representation ρ : CAG̃ −→ S, consider the stackMδ
G̃

(n) parametrizing

δ-twisted G̃-bundles E such that the corresponding vector bundles Eρ(np) are generated
by global sections and H1(X, Eρ(np)) = 0. By the above discussion, we get the following:

Proposition 3.6. The stacks Mδ
G̃

(n) can be presented as the quotient stack [Rδ
G̃

(n)/Γn],

where Rδ
G̃

(n) is a smooth scheme and Γn is a reductive group. Moreover Rδ
G̃

(n) supports

a family W of δ-twisted G̃–bundles along with a lift of the action of Γn.

3.5. Proof of Proposition 2.8. We now observe that these spaces Rδ
G̃

(n) can be used

to give the morphism of the underlying topological stacks πtop : QG̃ −→ Mδ
G induced

by the morphism of stacks π : QG̃ −→ Mδ
G in Proposition 2.4. Since Mδ

G is a quotient
of Mδ

G̃
by the finite group H1(X, π1(G)), it is enough to consider the simply connected

case. For each n, we define Xn ⊂ QG̃ by

Xn = {gP ∈ QG̃ : H1(X, ρ∗(π(g))⊗O(np)) = 0} ,

where P = L+G̃. It follows that Xn ⊂ Xn+1. The affine Grassmannian QG̃ has the
structure of an ind-variety, and hence Xn acquires a natural topology. By the proof of
Lemma 3.2 in [KN], we see that each Xn is open in QG̃ and that

⋃
n≥0Xn = QG̃. By

definition

Xn = π−1(Mδ
G̃

(n)) ,

and it parametrizes a family of δ-twisted G̃–bundles. By the universality of Rδ
G̃

(n) (see

Section 7.8 in [KNR] and Section 3 in [KN]), we get a family Fn of Γn–bundles on Xn

and Γn–equivariant morphism Fn −→ Rδ
G̃

(n). Taking quotients, we get a morphism of

their underlying topological quotient stacks Xn −→ Mδ
G̃

(n). Taking the limit, we get

the required morphism of topological stacks πtop : QG̃ −→Mδ
G̃

. This completes the proof
of Proposition 2.8.

3.6. Fundamental group of Mδ,rs

G̃
. Let Rδ,ss

G̃
(n) (respectively, Rδ,rs

G̃
(n)) be an open

subscheme of Rδ
G̃

(n) such that the associated family of δ twisted principal G̃-bundles is

semistable (respectively, regularly stable). Since our representation ρ takes the center of

CAG̃ to the center of S, it follows from [RR, Theorem 3.18] (see also [Ra2]), that the
canonical map RCAG̃(n) −→ RS(n) preserves semistability.

For n large enough,Mδ,ss

G̃
↪→ Mδ

G̃
(n) and we get thatMδ,ss

G̃
coincides with the quotient

stack [Rδ,ss

G̃
(n)/Γn].

Lemma 3.7. For n large enough, the codimension of the complement of Rδ,ss

G̃
(n) in Rδ

G̃
(n)

is at least two. In particular π1(Mδ,ss

G̃
) = π1(Mδ

G̃
(n)).

Proof. By [BH1, Lemma 2.1] (see also [Fa, Theorem II.6]), the codimension of Mδ,ss

G̃
in

Mδ
G̃

(n) is at least two. Since Rδ
G̃

(n) and Rδ,ss

G̃
(n) are Γn torsors, this implies that the
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codimension of the complement of Rδ,ss

G̃
(n) in Rδ

G̃
(n) is at least two. Now by construction

Rδ
G̃

(n) is smooth and hence π1(Rδ,ss

G̃
(n)) = π1(Rδ

G̃
(n)). Thus the result follows. �

Lemma 3.8. The fundamental group π1(Mδ,rs

G̃
) is trivial if

• either g(X) ≥ 3, or

• g = 2 with either G̃ 6= SL2 or δ 6= 1.

Proof. By [BH2, Theorem 2.5], we get that the codimension of the complement of Mδ,rs

G̃

in Mδ,ss

G̃
is at least 2 if g(X) ≥ 3 and G̃ 6= SL2 or δ 6= 1 if g(X) = 2. Since Rδ,rs

G̃
(n)

(respectively Rδ,ss

G̃
(n)) are both Γn–torsors, it implies that for n large enough the codi-

mension of the complement of Rδ,rs

G̃
(n) in Rδ,ss

G̃
(n) is at least two. Moreover, both Rδ,rs

G̃
(n)

and Rδ,ss

G̃
(n) are smooth. Thus π1(Rδ,rs

G̃
(n)) = π1(Rδ,ss

G̃
(n)). Thus for n large enough, we

get

π1(Mδ,rs

G̃
) = π1(Mδ,ss

G̃
) = π1(Mδ

G̃
(n)).

Now by taking limits and applying Lemma 2.9, we get that π1(Mδ,rs

G̃
) ' π1(Mδ

G̃
). �

3.7. Twisted Moduli spaces. The twisted moduli space Mδ
G̃

associated to the triple
(X, G, δ) is defined just as the twisted moduli stack is defined (see Equation (3.5)). As

before, let A be the subgroup of the center of G̃ isomorphic to π1(G).

Definition 3.9. The space Mδ
G̃,A

is defined to be the moduli space of semistable principal

CAG̃–bundles E on X (see Equation (3.2)) such that the associated principal T–bundle
obtained by extending the structure group of E using the homomorphism det in (3.3)

is the principal T–bundle corresponding to (OX(d1p), . . . , OX(dsp)), where δ and ~d =
(d1, . . . , ds) are related by (3.4).

For notational simplicity, we drop the subscript A and write Mδ
G̃

for Mδ
G̃, A

.

Let

Mδ,rs

G̃
⊂ Mδ

G̃

be the twisted moduli space of regularly stable principal G–bundles associated to the
triple (X, G, δ). As before, we assume that g ≥ 3 and for g = 2, either G 6= SL2(C) or
δ 6= 1.

3.7.1. Presentation of moduli spaces. We continue with the same notations as in Section

3.4. By our constructions in Section 3.4, we get a map CAG̃ → S which preserves the
center. This induces a morphism MCAG̃ → MS, which, in turn, give the morphisms

Mδ
G̃
→ Md′

S (see Diagram 3.7). By the discussion in Section 3.4, the stack Mδ,ss

G̃
(re-

spectively, Md′,ss
S ) is represented as a stack quotient of Rδ,ss

G̃
(respectively, Rd′,ss

S ) by a
reductive group Γn. From classical theory of existence of good quotients of moduli spaces

of vector bundles on a curve, it follows that Md′

S is a good quotient of Rd′,ss
S by Γn. Now

since semistability is preserved ([RR, Theorem 3.18]), the construction of Mδ
G̃

as a good

quotient of Rδ,ss

G̃
by Γn follows from Lemma 5.1 in [Ra2].
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Corollary 3.10. The variety Mδ,rs

G̃
is simply connected.

Proof. The coarse moduli space for Mδ,rs

G̃
is Mδ,rs

G̃
. The morphism to the coarse moduli

space

Mδ,rs

G̃
−→ Mδ,rs

G̃
(3.8)

is a gerbe banded by the center Z(G̃) of G̃. A typical fiber over a point x ∈ Mδ,rs

G̃
(C) is given

by the classifying stack Γx := B(Z(G̃)), whose associated topological stack is connected.
Moreover, banded gerbes are weak Serre fibrations [No3, Section 4.4]. Therefore, using the
homotopy exact sequence for the morphism (3.8), we conclude that the homomorphism

π1(Mδ,rs

G̃
) −→ π1(Mδ,rs

G̃
)

induced by the morphism (3.8) is surjective. Finally, π1(Mδ,rs

G̃
) = 1 by Lemma 3.8. �

4. Fundamental group of a moduli space of principal bundles

4.1. Simply connected simple groups. Let X be a compact connected Riemann sur-

face of genus g ≥ 2. Let G be a simple group with simply connected cover G̃. Consider

π1(G) as a subgroup A of the center of G̃. As before, for any δ ∈ π1(G), let Mδ
G̃

= Mδ
G̃,A

be

the twisted moduli space (see Definition 3.9) of semistable bundles associated to (X, G, δ).

Recall that G is isomorphic to G̃/A.

Proposition 4.1. The moduli space Mδ
G̃

is simply connected.

Proof. First we consider the case where g = 2, G = SL(2,C) and δ = 1. In this case, it
follows from [NR, p. 27, Lemma 6.2 (ii) and p. 33, Theorem 2] that Mδ

G̃
= CP3, so this

moduli space is simply connected.

Therefore, we assume that either G 6= SL(2,C) or δ 6= 1 whenever g = 2. The Zariski
open subset

Mδ,rs

G̃
⊂ Mδ

G̃
(4.1)

is simply connected (Corollary 3.10). First observe that Mδ
G̃

is a subspace of Mδ
CAG̃

realized

as a fiber of the determinant map M
CAG̃

−→ MT in (3.3). Since CAG̃ is reductive, we

know by Corollary 3.4 of [BH1] that Mδ,rs

CAG̃
is the smooth locus of Mδ

CAG̃
. Since Mδ,rs

CAG̃
is

an étale locally trivial fiber bundle over a smooth variety with Mδ,rs

G̃
as the typical fiber,

it follows that Mδ,rs

G̃
is the smooth locus of Mδ

G̃
.

We note that if Z is a normal projective variety, and UZ ⊂ Z is its smooth locus, then
the homomorphism π1(UZ) −→ π1(Z) induced by the inclusion map is surjective. To
prove this, take any desingularization

σ : Ẑ −→ Z .

By Zariski’s main theorem (cf. [Ha, p. 280, Ch. III, Corollary 11.4]) the fibers of σ are
all connected. Therefore, the homomorphism

σ∗ : π1(Ẑ) −→ π1(Z)
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induced by σ is surjective. Furthermore, the homomorphism π1(σ−1(UZ)) −→ π1(Ẑ)

induced by the inclusion map is surjective, because Ẑ is smooth. But

σ|σ−1(UZ) : σ−1(UZ) −→ UZ

is an isomorphism. Hence combining the above observations we conclude that the homo-
morphism π1(UZ) −→ π1(Z) is surjective.

Now, by construction ([BLS, Lemma 7.3] and [Ra2, Theorem 5.9]) the variety Mδ
G̃

is

a good quotient (see Section 3.7.1) of a smooth scheme by a reductive group; hence it is
normal. So the homomorphism of fundamental groups induced by the inclusion in (4.1) is

surjective. This implies that Mδ
G̃

is simply connected, because Mδ,rs

G̃
is simply connected

by Corollary 3.10. �

4.2. All simple groups. As before, assume that g ≥ 2. Let G be any simple group.
Fix an element

δ ∈ π1(G) . (4.2)

As before, Mδ
G denotes the moduli space of semistable principal G–bundles on X of

topological type δ.

Theorem 4.2. The moduli space Mδ
G is simply connected.

Proof. Let γ : G̃ −→ G be the universal covering. The subgroup kernel(γ) ⊂ G̃ will be

denoted by A. This subgroup A is contained in the center of G̃, and

A = π1(G) . (4.3)

Let

Γ := Hom(π1(X), A) = H1(X, A) (4.4)

be the isomorphism classes of principal A–bundles on X. We note that Γ is a finite abelian
group. The group structure on A produces a group structure on Γ because A is abelian.

Let Mδ
G̃

be the twisted moduli space of semistable principal bundles associated to

(X, G, δ), where δ is the element in (4.2). We will construct an action of Γ on Mδ
G̃

.
The homomorphism

G̃× A −→ G̃ , (z, a) 7−→ za

produces a homomorphism

τ : CAG̃× A −→ CAG̃ ,

where CAG̃ is the quotient group in (3.2). Given a principal CAG̃–bundle E and a

principal A–bundle F on X, we have a principal CAG̃–bundle τ∗(E ×X F ), which is

the extension of structure group of the principal (CAG̃ × A)–bundle E ×X F , using the
above homomorphism τ . Clearly, τ∗(E ×X F ) is semistable if and only if E is semistable.
Consequently, we get an action on Mδ

G̃
of the group Γ in (4.4)

τ̂ : Mδ
G̃
× Γ −→ Mδ

G̃
. (4.5)

Consider the projection to the second factor

CAG̃ −→ (G̃/A)× (T/A) = G×(T/A) −→ G ,
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where CAG̃ is defined in (3.2). Given a principal CAG̃–bundle on X, we have a principal
G–bundle obtained by extending the structure group using this homomorphism. This
produces a morphism Mδ

G̃
−→ Mδ

G. This morphism clearly factors through the quotient

Mδ
G̃
/Γ for the above action of τ̂ on Mδ

G̃
. The resulting morphism

Mδ
G̃
/Γ −→ Mδ

G

is an isomorphism.

The homomorphism Γ −→ Aut(Mδ
G̃

) given by the above action of τ̂ on Mδ
G̃

is injective.

To prove this, take any nontrivial element h0 ∈ Hom(π1(X), A) = Γ. Let F −→ X be
the principal A–bundle corresponding to h0. Let

h : X̃ −→ X

be the étale Galois covering corresponding to kernel(h0) ⊂ π1(X). The pullback h∗F −→
X̃ is a trivial principal A–bundle. Take any principal CAG̃–bundle E on X such that

• the pullback h∗E is regularly stable, and
• E lies in the moduli space Mδ

G̃
.

Since h∗F is a trivial principal A–bundle, it follows that an isomorphism between E and
τ∗(E ×X F ) produces an automorphism of h∗E; such an automorphism of h∗E is not

given by an element of the center of CAG̃ because F is nontrivial. Since h∗E is regularly
stable, it follows that the point of Mδ

G̃
given by E is not fixed by the action of h on Mδ

G̃
.

Therefore, the above homomorphism

Γ −→ Aut(Mδ
G̃

)

is injective.

The fundamental group of the quotient of a path connected, simply connected, locally
compact metric space by a faithful action of a finite group B is the quotient of B by the
normal subgroup of it generated by all the isotropy subgroups [Am, p. 299, Theorem].
We shall apply this result to the action in (4.5). Note that the moduli space Mδ

G̃
is simply

connected by Proposition 4.1.

Since A is abelian, the group Γ in (4.4) is generated by the homomorphisms π1(X) −→
A such that the image is a cyclic subgroup of A. Take any

θ : π1(X) −→ A (4.6)

such that θ(π1(X)) is a cyclic subgroup of A; the order of θ will be denoted by m0. In view
of the above mentioned result of [Am], to prove that Mδ

G is simply connected it suffices
to show that the action of θ on Mδ

G̃
has a fixed point. This result was proved in [BLS,

Lemma 7.4(b)]. We give another proof of this fact and also recall the proof in [BLS].

4.2.1. First Proof. It can be shown that there is a set of generators {a1, · · · , ag, b1, · · · , bg}
of standard type of π1(X) with a single relation

g∏
i=1

aibia
−1
i b−1

i = 1

such that
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(1) θ(bi) = 1 for all 1 ≤ i ≤ g, and
(2) θ(ai) = 1 for all 2 ≤ i ≤ g.

Indeed, for any element ` := (`1, . . . , `2g) ∈ (Z/m0Z)2g (recall that m0 is the order of
the image of θ), there is an element A ∈ Sp(2g,Z) such that

`A = (`1, 0, 0, . . . , 0) .

The image of the natural homomorphism from the mapping class group for X to the
automorphism group Aut(H1(X, Z)) is the symplectic group associated to the symplectic
form on H1(X, Z) defined by the cap product. Combining these it follows that given
any standard presentation of π1(X), there is an element of the mapping class group that
takes it to a presentation of π1(X) satisfying the above conditions. Clearly, the above
presentation of π1(X) depends on θ.

Fix a maximal compact subgroup

K̃ ⊂ G̃

Let F2g denote the free group generated by {a1, . . . , ag, b1, . . . , bg}, so π1(X) is a quotient
of F2g. Let R denote the space of all homomorphisms

β : F2g −→ K̃

such that β(
∏g

i=1 aibia
−1
i b−1

i ) = δ′, where δ′ ∈ A is the element corresponding to δ ∈
π1(G) (see (4.3), (4.2)). The group K̃ acts on R through the conjugation action of K̃ on
itself. A theorem of Ramanathan [Ra1] shows that

Mδ
G̃

= R/K̃.

The action τ̂ (see (4.5)) of θ (see (4.6)) on Mδ
G̃

sends any homomorphism β as above to
the homomorphism defined as follows:

• bi 7−→ β(bi) for all 1 ≤ i ≤ g,
• ai 7−→ β(ai) for all 2 ≤ i ≤ g, and
• a1 7−→ β(a1)θ(a1).

Define the subset of K̃
3

S̃ := {(x1, x2, x3) ∈ K̃
3 | [x1, x2] = δ′, [x3, x1] = θ(a1), [x3, x2] = 1} .

The number of connected components of S̃ coincides with that of the quotient space

S := S̃/K̃

because K̃ is connected. The set of connected components of S is described in [BFM,
p. 6, Theorem 1.5.1(3)]; if we set

C =

 1 δ′ θ(a1)−1

(δ′)−1 1 1
θ(a1) 1 1


in [BFM, p. 6, Theorem 1.5.1], and G in [BFM, p. 6, Theorem 1.5.1] to be K̃, then the
above quotient S coincides with the space TG(C) in [BFM, p. 6, Theorem 1.5.1]. Setting
k = 1 in [BFM, p. 6, Theorem 1.5.1(3)] we conclude that TG(C) = S is nonempty
because the Euler ϕ–function sends 1 to 1.
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Take any triple (x1, x2, x3) ∈ S̃. Let

β0 ∈ Hom(F2g, K̃)

be the homomorphism defined by

• bi 7−→ 1 for all 2 ≤ i ≤ g,
• ai 7−→ 1 for all 2 ≤ i ≤ g,
• a1 7−→ x1, and
• b1 7−→ x2.

Note that β0 ∈ R. Let

β′0 ∈ R/K̃ = Mδ
G̃

be the image of β0 under the quotient map. We have x3x1x
−1
3 = x1θ(a1), because

[x3, x1] = θ(a1). In view of this and the third condition that [x3, x2] = 1, we conclude

from the above description of the action of Γ on R/K̃ = Mδ
G̃

that the above point β′0 is

fixed by the action of θ. As noted before, this completes the proof using [Am, p. 299,
Theorem]. �

4.2.2. Second Proof. The following proof is well known [BLS, Lemma 7.2(b)], but we
recall it for completeness of the exposition:

Recall that Γ = H1(X, A) acts on Mδ
G̃

, where G̃ is simply connected. Thus every ele-

ment of γ ∈ Γ gives an automorphism of Mδ
G̃

of finite order. First following an argument

in [KNR, Corollary 6.3], we show that Mδ
G̃

is unirational. By uniformization theorem,
Proposition 2.2, we get a surjection from the affine Grassmannian QG̃ to the moduli
stack Mδ

G̃
. In particular there is a surjection from an open subset of QG̃ parametriz-

ing semistable bundle to Mδ
G̃

. Since QG̃ is a direct limit of an increasing sequence of

generalized Schubert varieties, it follows that Mδ
G̃

is unirational.

Lemma 4.3. Let Y be an unirational, projective variety over C. Then any finite order
automorphism of Y must have a fixed point.

Proof. Let us assume that Y is smooth. Since H i(Y, OY ) = 0 for all i > 0, by the
holomorphic Lefschetz fixed-point formula, any finite order automorphism of Y must have
a fixed point. Thus we are done. If Y is singular, let C be the cyclic group generated

by the finite order automorphism. Let Ỹ be a C-equivariant resolution of singularities,

[BM], [EV], of Ỹ . By the previous step, we get a fixed point of Ỹ under the action of any
element c ∈ C. Since the resolution is C-equivariant, we get a fixed point of Y under the
action of c. This completes the proof. �

4.3. The case of reductive groups. First assume that G is any connected semisimple
affine algebraic group defined over C. Take any δ ∈ π1(G). Let Mδ

G denote the moduli
space of semistable principal G–bundles on X of topological type δ.

Corollary 4.4. The moduli space Mδ
G is simply connected.
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Proof. Let Z ⊂ G be the center. The quotient G /Z is isomorphic to
∏d

i=1 Gi, where each
Gi is simple with trivial center. The image of δ in π1(Gi) under the quotient map

G /Z =
d∏
i=1

Gi −→ Gi

will be denoted by δi. Let Mδi
Gi

be the moduli space of semistable principal Gi–bundles
on X of topological type δi.

The isomorphism classes of principal Z–bundles on X will be denoted by Γ. The
homomorphism G×Z −→ G, (x, z) 7−→ xz, produces an action of the abelian group Γ
on Mδ

G. We have
d∏
i=1

Mδi
Gi

= Mδ
G/Γ . (4.7)

Now
∏d

i=1 Mδi
Gi

is simply connected by Theorem 4.2. Therefore, from (4.7) we conclude

that Mδ
G is simply connected. �

Finally, let G be any connected reductive affine algebraic group defined over C. The
commutator subgroup [G, G] is connected semisimple, and there is a short exact sequence
of groups

1 −→ [G, G] −→ G
q−→ Q := G /[G, G] −→ 1 , (4.8)

where the quotient Q is a product of copies of the multiplicative group Gm.

Take any δ ∈ π1(G). The image of δ in π1(Q) under the above projection q will be
denoted by α. Let Mδ

G denote the moduli space of semistable principal G–bundles on X
of topological type δ. The moduli space of principal Q–bundles on X of topological type
α will be denoted by J

α

Q(X). We note that J
α

Q(X) is isomorphic to (Pic0(X))d, where d
is the dimension of Q. Therefore, we have

π1(JαQ(X)) = Z2gd .

The projection q in (4.8) induces a morphism

q̃ : Mδ
G −→ JαQ(X) . (4.9)

Corollary 4.5. The homomorphism

q̃∗ : π1(Mδ
G) −→ π1(JαQ(X))

induced by the projection q̃ in (4.9) is an isomorphism.

Proof. Let Z denote the center of [G, G]. The moduli space of principal Z–bundles on X
will be denoted by Γ.

The projection q̃ in (4.9) is surjective. It can be shown that q̃ is étale locally trivial
as follows. For that, let Z0 ⊂ Z be the connected component containing the identity
element. Let

q′ : G −→ G /Z0

be the natural projection. Let

α′ := q′∗(δ) ∈ π1(G /Z0)
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be the image under the homomorphism q′∗ : π1(G) −→ π1(G /Z0) induced by q′. Let
Mα′

G /Z0
be the corresponding moduli space of semistable principal G /Z0–bundles on X.

Let

$ : Mδ
G −→ Mα′

G /Z0
× JαQ(X)

be the morphism of moduli spaces corresponding to the surjective homomorphism

G −→ (G /Z0)× (G /[G, G]) , z 7−→ (q′(z), q(z)) .

It is straightforward to check that

q̃ = p2 ◦$ , (4.10)

where p2 : Mα′

G /Z0
× JαQ(X) −→ JαQ(X) is the natural projection, and q̃ is the map in

(4.9).

Consider the finite abelian group Z1 := [G, G]
⋂

Z0 ⊂ G. Let MZ1 be the group of
principal Z1–bundles on X. The group MZ1 acts on Mδ

G, and this action of MZ1 on Mδ
G

takes any fiber of q̃ to itself. In fact, we have

q̃−1(t)/MZ1 = Mα′

G /Z0
.

Therefore, from (4.10) it is deduced that q̃ is étale locally trivial.

Hence by Corollary 4.4, we get that M is simply connected. Now from the long exact
sequence of homotopy groups associated to the fiber bundle in (4.9) we conclude that the
homomorphism q̃∗ is an isomorphism. �

Remark 4.6. Take G to be any connected complex affine algebraic group. Let G be the
quotient of G by the unipotent radical of G, so G is a connected complex reductive affine
algebraic group. For any δ ∈ π1(G) = π1(G), the natural projection

Mδ
G −→ Mδ

G

is surjective with contractible fibers, in particular this map Mδ
G −→ Mδ

G induces an iso-
morphism of fundamental groups. Consequently, Theorem 1.1 computes the fundamental
group of Mδ

G.
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